Journal of Superconductivity and Novel Magnetism

, Volume 25, Issue 5, pp 1307–1311

Superconductivity in Striped and Multi-Fermi-Surface Hubbard Models: From the Cuprates to the Pnictides

Original Paper

DOI: 10.1007/s10948-012-1600-7

Cite this article as:
Maier, T.A. J Supercond Nov Magn (2012) 25: 1307. doi:10.1007/s10948-012-1600-7

Abstract

Single- and multiband Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here, we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.

Keywords

SuperconductivityCupratesPnictides

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Computer Science and Mathematics Division and Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA