Skip to main content
Log in

Search for Superconductivity in Ultra-dense Deuterium D(−1) at Room Temperature: Depletion of D(−1) at Field Strength >0.05 T

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ultra-dense deuterium D(−1) is expected to be both a superfluid and a superconductor as shown by recent theoretical research. Condensed D(−1) can be deposited on surfaces by a source which produces a stream of clusters. A magnetic field strongly influences the type of material formed. Very little of D(−1) and of the form D(1), which is strongly coupled to D(−1), exists on the magnet surface or within several mm from the magnet surface. Even the formation of D(−1) on the source emitter is strongly influenced by a magnetic field, with a critical field strength in the range 0.03–0.07 T. Higher excitation levels D(2) and D(3) dominate in a magnetic field. The excitation level D(2) is now observed for the first time. The removal of D(−1) and D(1) in strong magnetic fields is proposed to be due to a Meissner effect in long D(−1) clusters by large-orbit electron motion. The lifting of long D(−1) clusters above the magnet surface is slightly larger than expected, possibly due to the coupling to D(1). The previously reported oscillation between D(−1) and D(1) in an electric field is proposed to be due to destruction of D(−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badiei, S., Andersson, P.U., Holmlid, L.: Phys. Scr. 81, 045601 (2010)

    Article  ADS  Google Scholar 

  2. Badiei, S., Andersson, P.U., Holmlid, L.: Appl. Phys. Lett. 96, 124103 (2010)

    Article  ADS  Google Scholar 

  3. Andersson, P.U., Lönn, B., Holmlid, L.: Rev. Sci. Instrum. 82, 013503 (2011)

    Article  ADS  Google Scholar 

  4. Holmlid, L.: Int. J. Mass Spectrom. 304, 51 (2011)

    Article  Google Scholar 

  5. Berezhiani, L., Gabadadze, G., Pirtskhalava, D.: J. High Energy Phys. 4, 94 (2011)

    ADS  Google Scholar 

  6. Bedaque, P.F., Buchoff, M.I., Cherman, A.: J. High Energy Phys. 4, 122 (2010)

    ADS  Google Scholar 

  7. Winterberg, F.: J. Fusion Energy 29, 317 (2010)

    Article  Google Scholar 

  8. Winterberg, F.: Phys. Lett. A 374, 2766 (2010)

    Article  ADS  Google Scholar 

  9. Andersson, P.U., Holmlid, L.: Phys. Lett. A 373, 3067 (2009)

    Article  ADS  Google Scholar 

  10. Andersson, P.U., Holmlid, L.: Phys. Lett. A 375, 1344 (2011)

    Article  ADS  Google Scholar 

  11. Badiei, S., Andersson, P.U., Holmlid, L.: Laser Part. Beams 28, 313 (2010)

    Article  ADS  Google Scholar 

  12. Andersson, P.U., Holmlid, L.: J. Fusion Energy (2011, in print) doi:10.1007/s10894-011-9468-2

    Google Scholar 

  13. Ashcroft, N.W.: J. Low Temp. Phys. 139, 711 (2005)

    Article  ADS  Google Scholar 

  14. Militzer, B., Graham, R.L.: J. Phys. Chem. Solids 67, 2136 (2006)

    Article  ADS  Google Scholar 

  15. Manykin, E.A., Ojovan, M.I., Poluektov, P.P.: Proc. SPIE 6181, 618105-1-9 (2006)

    Google Scholar 

  16. Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P.: Sov. Phys. JETP 75, 440 (1992)

    Google Scholar 

  17. Holmlid, L.: Chem. Phys. 237, 11 (1998)

    Article  ADS  Google Scholar 

  18. Holmlid, L.: J. Mol. Struct. 885, 122 (2008)

    Article  ADS  Google Scholar 

  19. Kotarba, A., Dmytrzyk, J., Narkiewicz, U., Baranski, A.: React. Kinet. Catal. Lett. 74, 143 (2001)

    Article  Google Scholar 

  20. Kotarba, A., Baranski, A., Hodorowicz, S., Sokolowski, J., Szytula, A., Holmlid, L.: Catal. Lett. 67, 129 (2000)

    Article  Google Scholar 

  21. Kotarba, A., Adamski, G., Sojka, Z., Witkowski, S., Djega-Mariadassou, G.: Stud. Surf. Sci. Catal. 130A, 485 (2000)

    Article  Google Scholar 

  22. Chiesa, M., Giamello, E., Di Valentin, C., Pacchioni, G., Sojka, Z., Van Doorslaer, S.: J. Am. Chem. Soc. 127, 16935 (2005)

    Article  Google Scholar 

  23. Mourachko, I., Li, W., Gallagher, T.F.: Phys. Rev. A 70, 031401 (2004)

    Article  ADS  Google Scholar 

  24. Anderson, W.R., Robinson, M.P., Martin, J.D.D., Gallagher, T.F.: Phys. Rev. A 65, 063404 (2002)

    Article  ADS  Google Scholar 

  25. Choi, J.-H., Knuffmann, B., Cubel Liebisch, T., Reinhard, A., Raithel, G.: Adv. At. Mol. Opt. Phys. 54, 132 (2006)

    Google Scholar 

  26. Badiei, S., Holmlid, L.: J. Phys. B, At. Mol. Opt. Phys. 39, 4191 (2006)

    Article  ADS  Google Scholar 

  27. Holmlid, L.: J. Nanopart. Res. 13, 5535 (2011)

    Article  Google Scholar 

  28. Holmlid, L.: J. Clust. Sci. (2011, in print) doi:10.1007/s10876-011-0387-1

  29. Hirsch, J.E.: Physica C 470, 635 (2010)

    Article  ADS  Google Scholar 

  30. Meima, G.R., Menon, P.G.: Appl. Catal. A, Gen. 212, 239 (2001)

    Article  Google Scholar 

  31. Muhler, M., Schlögl, R., Ertl, G.: J. Catal. 138, 413 (1992)

    Article  Google Scholar 

  32. Kotarba, A., Holmlid, L.: Phys. Chem. Chem. Phys. 11, 4351 (2009)

    Article  Google Scholar 

  33. Guénault, T.: Basic Superfluids. Taylor & Francis, London (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Holmlid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, P.U., Holmlid, L. & Fuelling, S. Search for Superconductivity in Ultra-dense Deuterium D(−1) at Room Temperature: Depletion of D(−1) at Field Strength >0.05 T. J Supercond Nov Magn 25, 873–882 (2012). https://doi.org/10.1007/s10948-011-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-011-1371-6

Keywords

Navigation