Skip to main content
Log in

Quantum Discord and Classical Correlations of Two Bosonic Modes in the Two-Reservoir Model

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Within the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable quantum discord for a system consisting of two bosonic modes embedded in two independent thermal environments. We describe the evolution of discord in terms of the covariance matrix for Gaussian input states. In the case of an entangled initial squeezed thermal state, we analyze the evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal reservoirs. We describe also the evolution of classical correlations and show that they also decay asymptotically in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. L. Braunstein and P. van Loock, Rev. Mod. Phys., 77, 513 (2005).

    Article  ADS  MATH  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  3. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. W. H. Zurek, Ann. Phys. (Leipzig), 9, 853 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Ollivier and W. H. Zurek, Phys. Rev. Lett., 88, 017901 (2001).

    Article  ADS  Google Scholar 

  6. V. Madhok and A. Datta, Phys. Rev. A, 83, 032323 (2011).

    Article  ADS  Google Scholar 

  7. D. Cavalcanti, L. Aolita, S. Boixo, et al., Phys. Rev. A, 83, 032324 (2011).

    Article  ADS  Google Scholar 

  8. A. Isar, Open Sys. Inform. Dyn., 18, 175 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Isar, Phys. Scr., T147, 014015 (2012).

    Article  ADS  Google Scholar 

  10. A. Isar, Phys. Scr. T153, 014035 (2013).

    Article  ADS  Google Scholar 

  11. A. Isar, Phys. Scr., 87, 038108 (2013).

    Article  ADS  Google Scholar 

  12. A. Isar, Open Sys. Inform. Dynam., 20, 1340003 (2013).

    Article  MathSciNet  Google Scholar 

  13. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Lindblad, Commun. Math. Phys., 48, 119 (1976).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. A. Isar, A. Sandulescu, H. Scutaru, et al., Int. J. Mod. Phys. E, 3, 635 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Heinosaari, A. S. Holevo, and M. M. Wolf, Quantum Inform. Comput., 10, 0619 (2010).

    MathSciNet  Google Scholar 

  17. A. Sandulescu and H. Scutaru, Ann. Phys. (N.Y.), 173, 277 (1987).

    Google Scholar 

  18. B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A, 72, 032317 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Henderson and V. Vedral, J. Phys. A: Math. Gen., 34, 6899 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. P. Giorda and M. G. A. Paris, Phys. Rev. Lett., 105, 020503 (2010).

    Article  ADS  Google Scholar 

  21. G. Adesso and A. Datta, Phys. Rev. Lett., 105, 030501 (2010).

    Article  ADS  Google Scholar 

  22. O. Marian, T. A. Marian, and H. Scutaru, Phys. Rev. A, 68, 062309 (2003).

    Article  ADS  Google Scholar 

  23. A. Isar, Rom. J. Phys., 65, 711 (2013).

    MathSciNet  Google Scholar 

  24. A. Isar, J. Russ. Laser Res., 28, 439 (2007).

    Article  Google Scholar 

  25. A. Isar, Int. J. Quantum Inform., 6, 689 (2008).

    Article  MATH  Google Scholar 

  26. A. Isar, J. Russ. Laser Res., 31, 182 (2010).

    Article  Google Scholar 

  27. A. Isar, Phys. Scr., T143, 014012 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelian Isar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isar, A. Quantum Discord and Classical Correlations of Two Bosonic Modes in the Two-Reservoir Model. J Russ Laser Res 35, 62–70 (2014). https://doi.org/10.1007/s10946-014-9401-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9401-z

Keywords

Navigation