Skip to main content
Log in

Geometrical interpretation of the density matrix: Mixed and entangled states

  • Published:
Journal of Russian Laser Research Aims and scope

The correspondence between the density matrices ρ N × N and the points in {ie564-01} is clarified. The particular cases of N = 2 and N = 4 are considered in detail. The geometrical representation of pure and mixed states is given. A mixture characteristic is introduced and its relation to Tr ρ 2 is obtained. The measure of distance between two quantum states is established in a natural way, in view of such an approach. Attention is paid to the geometrical description of tomograms, the distance between them, and its relation to the geometrical distance between the density matrices. The entanglement of a system of two qubits is investigated in the geometrical picture, which makes the boundary between separable and entangled states take the form of algebraic inequalities. An easily computable measure of entanglement is suggested and its physical basis is discussed, resulting in a generalization of the notion of fidelity to mixed states. The measure of entanglement obtained for the Werner state is compared with the entanglement of creation, the relative entropy of entanglement, and other characteristics involved in the entanglement problem. For the pure states, a comparison with the approach employing the von Neumann entropy is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. D. Landau, Z. Phys., 45, 430 (1927).

    Article  ADS  Google Scholar 

  2. J. von Neumann, Göttingen. Nachr. (1927), p. 245.

  3. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, The geometry of density states, positive maps and tomograms, in B. Gruber (ed.), Proceedings of the International Symposium on Symmetries in Science XI (Bregenz, Austria, July 2004), Kluwer Academic Publishers, New York (2005), p. 395.

    Google Scholar 

  4. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Rep. Math. Phys., 55, 405 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Witte and M. Trucks, Phys. Lett. A, 257, 14 (1999).

    Article  ADS  Google Scholar 

  6. M. Ozawa, Phys. Lett. A, 268, 158 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. M. Kuś and K. Zyczkowski, Phys. Rev. A, 63, 032307 (2001).

  8. R. A. Bertlmann, H. Narnhofer, and W. Thirring, Phys. Rev. A, 66, 032319 (2002).

    Google Scholar 

  9. R. A. Bertlmann and P. Krammer, Phys. Rev. A, 77, 024303 (2008).

    Google Scholar 

  10. J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A, 74, 012313 (2006).

    Google Scholar 

  11. L. Tamaryan, D. Park, J. Son, and S. Tamaryan, Phys. Rev. A, 78, 032304 (2008).

    Google Scholar 

  12. T. Wei and P. M. Goldbart, Phys. Rev. A, 68, 042307 (2003).

    Google Scholar 

  13. M. A. Man'ko, V. I. Man'ko, and R. V. Mendes, J. Russ. Laser Res., 27, 507 (2006).

    Article  Google Scholar 

  14. O. V. Man'ko and V. I. Man'ko, J. Russ. Laser Res., 25, 115 (2004).

    Article  Google Scholar 

  15. A. Kuah and E. C. G. Sudarshan, Manifold of density matrices, quant-ph/0307218 (2003).

  16. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 20, 421 (1999).

    Article  Google Scholar 

  17. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Phys. A: Math. Gen., 35, 7173 (2002).

    Article  MathSciNet  Google Scholar 

  18. S. Bose and V. Vedral, Phys. Rev. A, 61, 040101(R) (2000).

  19. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys. Rev. A, 64, 030302 (2001).

    Google Scholar 

  20. V. V. Dodonov, O. V. Man'ko, V. I. Man'ko, and A. Wünsche, Phys. Scr., 59, 81 (1999).

    Article  MATH  ADS  Google Scholar 

  21. A. Wünsche, V. V. Dodonov, O. V. Man'ko, and V. I. Man'ko, Fortschr. Phys., 49, 1117 (2001).

    Article  Google Scholar 

  22. V. Bargmann, Ann. Math., 59, 1 (1954).

    Article  MathSciNet  Google Scholar 

  23. R. von Baltz, Europ. J. Phys., 11, 215 (1990).

    Article  Google Scholar 

  24. J. Anandan, Found. Phys., 21, 1265 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, MS (2000).

    MATH  Google Scholar 

  26. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Google Scholar 

  27. V. V. Dodonov and V. I. Man'ko, Phys. Lett. A, 229, 335 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. O. V. Man'ko, V. I. Man'ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 24, 507 (2003).

    Article  Google Scholar 

  30. T. Rockafeller, Convex Analysis, Prinston University Press, NJ (1970).

    Google Scholar 

  31. A. Peres, Phys. Rev. Lett., 77, 1413 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. R. F. Werner, Phys. Rev. A, 40, 4277 (1989).

    Article  ADS  Google Scholar 

  33. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A, 223, 1 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A, 58, 883 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Hill and W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997).

    Article  ADS  Google Scholar 

  36. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 54, 3824 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Popescu and D. Rohrlich, Phys. Rev. A, 56, R3319 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  38. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett., 78, 2275 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. V. Vedral and M. B. Plenio, Phys. Rev. A, 57, 1619 (1998).

    Article  ADS  Google Scholar 

  40. S. Abe and A. K. Rajagopal, Physica A, 289, 157 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Simon, Phys. Rev. Lett., 84, 2726 (2002).

    Article  ADS  Google Scholar 

  42. V. I. Man'ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. C. Lupo, V. I. Man'ko, G. Marmo, and E. C. G. Sudarshan, J. Phys. A: Math. Gen., 38, 10377 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. R. A. Bertlmann, K. Durstberger, B. C. Hiesmayr, and P. Krammer, Phys. Rev. A, 72, 052331 (2005).

    Google Scholar 

  45. F. Verstraete, K. Audenaert, and B. D. Moor, J. Mod. Opt., 49, 1277 (2002).

    Article  MATH  ADS  Google Scholar 

  46. V. Vedral, M. B. Plenio, K. Jacobs, and P. L. Knight, Phys. Rev. A, 56, 4452 (1997).

    Article  ADS  Google Scholar 

  47. F. Hiai and D. Petz, Commun. Math. Phys., 143, 99 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).

    Article  ADS  Google Scholar 

  49. D. F. Mundarain and J. Stephany, Concurrence and negativity as distances, quant-ph/0712.1015 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Filippov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, S.N., Man’ko, V.I. Geometrical interpretation of the density matrix: Mixed and entangled states. J Russ Laser Res 29, 564–580 (2008). https://doi.org/10.1007/s10946-008-9050-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-9050-1

Keywords

Navigation