Skip to main content

Advertisement

Log in

The dramatic influence of gelation solvent choice on the structure and mechanical properties of resorcinol-formaldehyde aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Resorcinol-formaldehyde aerogels were synthesised using acid-catalysed polycondensation of resorcinol and formaldehyde in acetonitrile or dimethyl sulfoxide, followed by supercritical drying in CO2. The structure and mechanical properties of the aerogels were analysed using low temperature nitrogen adsorption, scanning electron microscopy, small-angle neutron scattering and stress-strain measurements in compression regime. The resorcinol-formaldehyde aerogels possessed a high specific surface area (200–510 m2/g) and porosity (41–82%), with a surface fractal dimension of 2.2–2.5. The mechanical strength of the materials reached high values (up to 31 MPa) and was well correlated with the density of aerogels (0.27–0.86 g/cm3). The results obtained demonstrate the dramatic influence of the nature of a solvent used during the gelation of resorcinol-formaldehyde aerogels on their structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Aegerter, N. Leventis, M.M. Koebel (eds.), Aerogels Handbook (Springer New York, New York, NY, 2011)

    Google Scholar 

  2. N. Hüsing, U. Schubert, Angew. Chemie Int. Ed. 37, 22 (1998)

    Article  Google Scholar 

  3. R. Baetens, B.P. Jelle, A. Gustavsen, Energy Build. 43, 761 (2011)

    Article  Google Scholar 

  4. C. Ji, S. Zhu, E. Zhang, W. Li, Y. Liu, W. Zhang, C. Su, Z. Gu, H. Zhang, RSC Adv. 12, 14137 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Baskaran, M. Ali, K. Gingrich, D.L. Porter, S. Chong, B.J. Riley, C.W. Peak, S.E. Naleway, I. Zharov, K. Carlson, Microporous Mesoporous Mater. 336, 111874 (2022)

    Article  CAS  Google Scholar 

  6. N. Leventis, Polym. (Basel) 14, 969 (2022)

    Article  CAS  Google Scholar 

  7. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)

    Article  CAS  Google Scholar 

  8. S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101 (2003)

    Article  CAS  Google Scholar 

  9. M. Schwan, L. Ratke, J. Mater. Chem. A 1, 13462 (2013)

    Article  CAS  Google Scholar 

  10. L.W. Hrubesh, R.W. Pekala, J. Mater. Res. 9, 731 (1994)

    Article  CAS  Google Scholar 

  11. X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Science, 255, 971 (1992)

  12. B.E. Yoldas, M.J. Annen, J. Bostaph, Chem. Mater. 12, 2475 (2000)

    Article  CAS  Google Scholar 

  13. A.C. Pierre, G.M.G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Xu, B. Xia, W. Wang, T. Ji, C. Ma, L. Gan, Carbon N. Y. 49, 3385 (2011)

    Article  CAS  Google Scholar 

  15. J.-H. Lee, S.-J. Park, Carbon N. Y. 163, 1 (2020)

    Article  CAS  Google Scholar 

  16. V.P.J. Chung, M.-C. Yip, W. Fang, Sens. Actuators B Chem 214, 181 (2015)

    Article  CAS  Google Scholar 

  17. K. Shang, J.-C. Yang, Z.-J. Cao, W. Liao, Y.-Z. Wang, D.A. Schiraldi, ACS Appl. Mater. Interfaces 9, 22985 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier, Amsterdam, 2013)

  19. D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non Cryst. Solids 351, 915 (2005)

    Article  CAS  Google Scholar 

  20. A. Szczurek, G. Amaral-Labat, V. Fierro, A. Pizzi, E. Masson, A. Celzard, Mater. Chem. Phys. 129, 1221 (2011)

    Article  CAS  Google Scholar 

  21. S.M. Attia, M.S. Abdelfatah, M.M. Mossad, J. Phys. Conf. Ser. 869, 012035 (2017)

    Article  Google Scholar 

  22. K. Barral, J. Non Cryst. Solids 225, 46 (1998)

    Article  CAS  Google Scholar 

  23. R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, J. Fricke, J. Non Cryst. Solids 221, 144 (1997)

    Article  CAS  Google Scholar 

  24. A.C. Pierre, Introduction to Sol-Gel Processing (Springer International Publishing, Cham, 2020)

    Book  Google Scholar 

  25. H. Maleki, L. Durães, C.A. García-González, P. del Gaudio, A. Portugal, M. Mahmoudi, Adv. Colloid Interface Sci. 236, 1 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. H. Maleki, Chem. Eng. J. 300, 98 (2016)

    Article  CAS  Google Scholar 

  27. G. Qin, S. Guo, Carbon N. Y. 39, 1935 (2001)

    Article  CAS  Google Scholar 

  28. M. Alshrah, M.-P. Tran, P. Gong, H.E. Naguib, C.B. Park, J. Colloid Interface Sci. 485, 65 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 19, 6138 (2007)

    Article  CAS  Google Scholar 

  30. A.M. ElKhatat, S.A. Al-Muhtaseb, Adv. Mater. 23, 2887 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. E. Martin, M. Prostredny, A. Fletcher, Gels 7, 142 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Gutmann, Electrochim. Acta 21, 661 (1976)

    Article  CAS  Google Scholar 

  33. W.R. Fawcett, J. Phys. Chem. 97, 9540 (1993)

    Article  CAS  Google Scholar 

  34. R.A. Miranda-Quintana, J. Smiatek, J. Mol. Liq 322, 114506 (2021)

    Article  CAS  Google Scholar 

  35. H.M. Far, S. Donthula, T. Taghvaee, A.M. Saeed, Z. Garr, C. Sotiriou-Leventis, N. Leventis, RSC Adv. 7, 51104 (2017)

    Article  CAS  Google Scholar 

  36. O. Barbieri, F. Ehrburger-Dolle, T.P. Rieker, G.M. Pajonk, N. Pinto, A. Venkateswara Rao, J. Non Cryst. Solids 285, 109 (2001)

    Article  CAS  Google Scholar 

  37. T. Taghvaee, S. Donthula, P.M. Rewatkar, H. Majedi Far, C. Sotiriou-Leventis, N. Leventis, ACS Nano 13, 3677 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. F. Cataldo, Eur. Chem. Bull. 4, 92 (2015)

    Google Scholar 

  39. Y. Zhong, G. Shao, X. Wu, Y. Kong, X. Wang, S. Cui, X. Shen, RSC Adv. 9, 22942 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  41. J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud. Surf. Sci. Catal. 160, 49 (2007)

    Article  CAS  Google Scholar 

  42. A.I. Kuklin, A.K. Islamov, V.I. Gordeliy, Neutron News 16, 16 (2005)

    Article  Google Scholar 

  43. A.G. Soloviev, T.M. Solovieva, and A. I. Kuklin, (2003). Available online http://wwwinfo.jinr.ru/programs/jinrlib/sas/indexe.html

  44. Y.M. Ostanevich, Makromol. Chemie. Macromol. Symp. 15, 91 (1988)

  45. D. Fairén-Jiménez, F. Carrasco-Marín, C. Moreno-Castilla, Carbon N. Y. 44, 2301 (2006)

    Article  Google Scholar 

  46. P.W. Voorhees, J. Stat. Phys. 38, 231 (1985)

    Article  Google Scholar 

  47. H. Tamon, H. Ishizaka, J. Colloid Interface Sci. 206, 577 (1998)

    Article  CAS  PubMed  Google Scholar 

  48. J.F. Walker, Formaldehyde, 3rd edition (Krieger Pub Co, N.Y., 1975)

  49. M. Calligaris, Coord. Chem. Rev. 248, 351 (2004)

    Article  CAS  Google Scholar 

  50. A. Kütt, S. Selberg, I. Kaljurand, S. Tshepelevitsh, A. Heering, A. Darnell, K. Kaupmees, M. Piirsalu, I. Leito, Tetrahedron Lett. 59, 3738 (2018)

    Article  Google Scholar 

  51. H.C. Malhotra, J. Appl. Polym. Sci. 20, 2461 (1976)

    Article  CAS  Google Scholar 

  52. J. Rojas-Herrera, P.C. Lozano, J. Non Cryst. Solids 458, 22 (2017)

    Article  CAS  Google Scholar 

  53. R. Pahl, U. Bonse, R.W. Pekala, J.H. Kinney, J. Appl. Crystallogr. 24, 771 (1991)

    Article  CAS  Google Scholar 

  54. O. Czakkel, B. Nagy, E. Geissler, K. László, J. Supercrit Fluids 75, 112 (2013)

    Article  CAS  Google Scholar 

  55. B. Matović, Y.E. Gorshkova, S.Y. Kottsov, G.P. Kopitsa, S. Butulija, T. Minović, Arsić, I. Cvijović-Alagić, Diam. Relat. Mater. 121, 108727 (2022)

    Article  Google Scholar 

  56. Y.B. Melnichenko, G.D. Wignall, D.R. Cole, H. Frielinghaus, J. Chem. Phys. 124, 204711 (2006)

    Article  CAS  PubMed  Google Scholar 

  57. J. Teixeira, Growth Form (Springer Netherlands, Dordrecht, 1986), pp. 145–162

    Book  Google Scholar 

  58. A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays (John Wiley & Sons, Inc., New York, 1955)

    Google Scholar 

  59. C. Oh, C.M. Sorensen, J. Colloid Interface Sci. 193, 17 (1997)

    Article  CAS  PubMed  Google Scholar 

  60. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995)

    Article  CAS  Google Scholar 

  61. D. Rojanski, D. Huppert, H.D. Bale, X. Dacai, P.W. Schmidt, D. Farin, A. Seri-Levy, D. Avnir, Phys. Rev. Lett. 56, 2505 (1986)

    Article  CAS  PubMed  Google Scholar 

  62. S.B. Ross, D.M. Smith, A.J. Hurd, D.W. Schaefer, Langmuir 4, 977 (1988)

    Article  CAS  Google Scholar 

  63. D.W. Schaefer, B.C. Bunker, J.P. Wilcoxon, Proc. R. Soc. London. A. Math. Phys. Sci. 423, 35 (1989)

  64. A. Höhr, H.-B. Neumann, P.W. Schmidt, P. Pfeifer, D. Avnir, Phys. Rev. B 38, 1462 (1988)

    Article  Google Scholar 

  65. S. Berthon, O. Barbieri, F. Ehrburger-Dolle, E. Geissler, P. Achard, F. Bley, A.-M. Hecht, F. Livet, G.M. Pajonk, N. Pinto, A. Rigacci, C. Rochas, J. Non Cryst. Solids 285, 154 (2001)

    Article  CAS  Google Scholar 

  66. S. Aney, J. Schettler, M. Schwan, B. Milow, A. Rege, Adv. Eng. Mater. 24, 2100095 (2022)

    Article  CAS  Google Scholar 

  67. R.W. Pekala, D.W. Schaefer, Macromolecules 26, 5487 (1993)

    Article  CAS  Google Scholar 

  68. E. Martin, M. Prostredny, A. Fletcher, P. Mulheran, Gels 6, 23 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. E. Martin, M. Prostredny, A. Fletcher, P. Mulheran, J. Phys. Chem. B 125, 1960 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. M.S. Arzhakov, P.P. Yakovlev, A.I. Lopatkin, Russ. Metall. 2020, 441 (2020)

  71. M. Jalalian, Q. Jiang, A. Coulon, M. Storb, R. Woodward, A. Bismarck, Mater. Des. 168, 107658 (2019)

    Article  Google Scholar 

  72. C. Mougel, T. Garnier, P. Cassagnau, N. Sintes-Zydowicz, Polym. (Guildf) 164, 86 (2019)

    Article  CAS  Google Scholar 

  73. L.J. Gibson, M.F. Ashby, Proc. R. Soc. London. A. Math. Phys. Sci. 382, 43 (1982)

  74. H. Lu, H. Luo, N. Leventis, Aerogels Handbook (Springer New York, New York, NY, 2011), pp. 499–535

    Book  Google Scholar 

  75. R.W. Pekala, F.M. Kong, Le J. Phys. Colloq. 24, C4 (1989)

    Article  Google Scholar 

  76. D.P. Mohite, S. Mahadik-Khanolkar, H. Luo, H. Lu, C. Sotiriou-Leventis, N. Leventis, Soft Matter 9, 1516 (2013)

    Article  CAS  Google Scholar 

  77. C. Chidambareswarapattar, P.M. McCarver, H. Luo, H. Lu, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 25, 3205 (2013)

    Article  CAS  Google Scholar 

  78. N. Leventis, C. Sotiriou-Leventis, N. Chandrasekaran, S. Mulik, Z.J. Larimore, H. Lu, G. Churu, J.T. Mang, Chem. Mater. 22, 6692 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Project No. 19-73-20125) and performed using the equipment of the JRC PMR IGIC RAS. Supercritical drying of the aerogels was conducted using the experimental facilities of IPAC RAS (Theme No. 0090-2019-0002). Mechanical properties were studied at IMET RAS (Task No. 075-00715-22-00).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alena N. Malkova, Anastasia А. Kolmakova, Natalia A. Sipyagina, Mikhail A. Kaplan, Alexander S. Baikin, Gennady P. Kopitsa, Olga S. Ivanova and Yulia E. Gorshkova. The first draft of the manuscript was written by Sergey A. Lermontov, Alexander E. Baranchikov, Alexey G. Kolmakov and Vladimir K. Ivanov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexander E. Baranchikov.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermontov, S.A., Malkova, A.N., Kolmakova, A.А. et al. The dramatic influence of gelation solvent choice on the structure and mechanical properties of resorcinol-formaldehyde aerogels. J Porous Mater 30, 589–598 (2023). https://doi.org/10.1007/s10934-022-01365-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01365-4

Keywords

Navigation