Skip to main content
Log in

Fe3O4@SiO2@TiO2-OSO3H: an efficient hierarchical nanocatalyst for the organic quinazolines syntheses

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A sulfonic acid functionalized titanium dioxide quasi-superparamagnetic nanocatalyst Fe3O4@SiO2@TiO2-OSO3H with average size of 61 nm and semispherical shape with surface area about 97 m2 g−1 with saturation magnetization 17.7 emu g−1 and the coercivity 9.84 Oe was successfully synthesized. The structure and morphology of the nanocatalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy, X-ray diffraction pattern, transmission electron microscopy, field-emission scanning electron microscopy, vibrating sample magnetometer and Brunauer–Emmett–Teller surface area analysis. The catalytic usage of the nanocatalyst was exemplified in synthesis of 2,3-dihydroquinazolin-4(1H)-one and spiroquinazolin-4(3H)-one derivatives in deep eutectic solvents (DESs) based on choline chloride and urea. We suggest that the synergistic effects in catalytic activities of titanium dioxide, organic acid and the CO2 capture property of DES are the main reasons for the improvement of catalytic activity. The synthesized spiroquinazolinones and dihydroquinazolinones derivatives were characterized by FT-IR, 1H and 13C nuclear magnetic resonance spectroscopy. The magnetic nanocatalyst exhibit high catalytic activity and can be simply separated from reaction media by an external magnet in a few seconds and could be reused for six cycles without significant loos in activity, which indicates the good immobilization of sulfonic acid on the magnetic titanium dioxide support. Furthermore, the solvent which has been used in this work can be readily isolated and reused for several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.T. Anastas, J.C. Warner, Green Chem. Theory Pract. 29–56 (1998)

  2. J.E. Mondloch, E. Bayram, R.G. Finke, J. Mol. Catal. A. 355, 1–38 (2012)

    Article  CAS  Google Scholar 

  3. H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 49, 1362–1395 (2010)

    Article  CAS  Google Scholar 

  4. G.A. Somorjai, H. Frei, J.Y. Park, J. Am. Chem. Soc. 131, 16589–16605 (2009)

    Article  CAS  Google Scholar 

  5. O. Schätz, W.J. Reiser, Stark. Chem. Eur. J 16, 8950–8967 (2010)

    Article  Google Scholar 

  6. D. Astruc, Nanoparticles and Catalysis, (Wiley, New York, 2008)

    Google Scholar 

  7. E. Roduner, Chem. Soc. Rev 35, 583–592 (2006)

    Article  CAS  Google Scholar 

  8. D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44, 7852–7872 (2005)

    Article  CAS  Google Scholar 

  9. H.P. Boehm, Discuss. Faraday Soc 52, 264–275 (1971)

    Article  Google Scholar 

  10. H. Kita, N. Henmi, K. Shimazu, H. Hattori, K. Tanabe, J. Chem. Soc. Faraday Trans. 1 77, 2451–2463 (1981)

    Article  CAS  Google Scholar 

  11. K. Shibata, T. Kiyoura, J. Kitagawa, T. Sumiyoshi, K. Tanabe, Bull. Chem. Soc. Jpn 46, 2985–2988 (1973)

    Article  CAS  Google Scholar 

  12. M. Waqif, J. Bachelier, O. Saur, J.-C. Lavalley, J. Mol. Catal. 72, 127–138 (1992)

    Article  CAS  Google Scholar 

  13. K. Mori, Y. Ohshima, K. Ehara, T. Akiyama, Chem. Lett. 38, 524–525 (2009)

    Article  CAS  Google Scholar 

  14. D. Uraguchi, M. Terada, J. Am. Chem. Soc. 126, 5356–5357 (2004)

    Article  CAS  Google Scholar 

  15. M. Terada, K. Sorimachi, J. Am. Chem. Soc. 129, 292–293 (2007)

    Article  CAS  Google Scholar 

  16. M. Rueping, A.P. Antonchick, E. Sugiono, K. Grenader, Angew. Chemie Int. Ed. 48, 908–910 (2009)

    Article  CAS  Google Scholar 

  17. R.K. Singh, B. Singh, R. Duvedi, S. Kumar, Res. Chem. Intermed. 41, 4083–4099 (2015)

    Article  CAS  Google Scholar 

  18. M. Sai, H. Yamamoto, J. Am. Chem. Soc. 137, 7091–7094 (2015)

    Article  CAS  Google Scholar 

  19. D. Wang, D. Astruc, Chem. Rev 114, 6949–6985 (2014)

    Article  CAS  Google Scholar 

  20. A. Maleki, H. Movahed, P. Ravaghi, T. Kari, RSC Adv. 6, 98777–98787 (2016)

    Article  CAS  Google Scholar 

  21. Z. Peng, H. Tang, Y. Tang, K.F. Yao, H.H. Shao, Int. J. Photoenergy 2014 (2014)

  22. Z.L. Liu, X. Wang, K.L. Yao, G.H. Du, Q.H. Lu, Z.H. Ding, J. Tao, Q. Ning, X.P. Luo, D.Y. Tian, J. Mater. Sci. 39, 2633–2636 (2004)

    Article  CAS  Google Scholar 

  23. O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Superlattices Microstruct. 52, 793–799 (2012)

    Article  CAS  Google Scholar 

  24. F. Dumitrache, I. Morjan, R. Alexandrescu, V. Ciupina, G. Prodan, I. Voicu, C. Fleaca, L. Albu, M. Savoiu, I. Sandu, Appl. Surf. Sci. 247, 25–31 (2005)

    Article  CAS  Google Scholar 

  25. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. 117, 2842–2845 (2005)

    Article  Google Scholar 

  26. Y. Tian, B. Yu, X. Li, K. Li, J. Mater. Chem. 21, 2476–2481 (2011)

    Article  CAS  Google Scholar 

  27. J.P. Cheng, R. Ma, D. Shi, F. Liu, X.B. Zhang, Ultrason. Sonochem. 18, 1038–1042 (2011)

    Article  CAS  Google Scholar 

  28. N. Basavegowda, K.B.S. Magar, K. Mishra, Y.R. Lee, New J. Chem. 38, 5415–5420 (2014)

    Article  CAS  Google Scholar 

  29. A.J. Amali, R.K. Rana, Green Chem. 11, 1781–1786 (2009)

    Article  CAS  Google Scholar 

  30. M. Zhu, G. Diao, J. Phys. Chem. C 115, 24743–24749 (2011)

    Article  CAS  Google Scholar 

  31. R. Cano, M. Yus, D.J. Ramón, Tetrahedron 68, 1393–1400 (2012)

    Article  CAS  Google Scholar 

  32. F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, Green Chem. 13, 1238–1243 (2011)

    Article  CAS  Google Scholar 

  33. A. Hu, G.T. Yee, W. Lin. J. Am. Chem. Soc. 127, 12486–12487 (2005)

    Article  CAS  Google Scholar 

  34. C.A. Gorski, J.T. Nurmi, P.G. Tratnyek, T.B. Hofstetter, M.M. Scherer, Environ. Sci. Technol. 44, 55–60 (2009)

    Article  Google Scholar 

  35. X. Zheng, S. Luo, L. Zhang, J.-P. Cheng, Green Chem. 11, 455–458 (2009)

    Article  CAS  Google Scholar 

  36. A. Maleki, H. Movahed, R. Paydar, RSC Adv. 6, 13657–13665 (2016)

    Article  CAS  Google Scholar 

  37. A. Maleki, Tetrahedron 68, 7827–7833 (2012)

    Article  CAS  Google Scholar 

  38. J. Zhu, H. Bienaymé, Multicomponent Reactions (Wiley, New York, 2006)

    Google Scholar 

  39. A. Maleki, M. Kamalzare. Catal. Commun. 53, 67–71 (2014)

    Article  CAS  Google Scholar 

  40. H.-Y. Lü, S.-H. Yang, J. Deng, Z.-H. Zhang, Aust. J. Chem 63, 1290–1296 (2010)

    Article  Google Scholar 

  41. D. Beydoun, R. Amal, G. Low, S. McEvoy, J. Mol. Catal. A. 180, 193–200 (2002)

    Article  CAS  Google Scholar 

  42. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. 1, 70–71 (2003)

    Article  Google Scholar 

  43. Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, J. Nat. Prod. 76, 2162–2173 (2013)

    Article  CAS  Google Scholar 

  44. G. García, S. Aparicio, R. Ullah, M. Atilhan, Energy Fuels 29, 2616–2644 (2015)

    Article  Google Scholar 

  45. M.-J. Hour, L.-J. Huang, S.-C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.-H. Lee, J. Med. Chem. 43, 4479–4487 (2000)

    Article  CAS  Google Scholar 

  46. Y.S. Sadanandam, K.R.M. Reddy, A.B. Rao, Eur. J. Med. Chem. 22, 169–173 (1987)

    Article  CAS  Google Scholar 

  47. G. Bonola, E. Sianesi, J. Med. Chem. 13, 329–332 (1970)

    Article  CAS  Google Scholar 

  48. J.B. Jiang, D.P. Hesson, B.A. Dusak, D.L. Dexter, G.J. Kang, E. Hamel, J. Med. Chem. 33, 1721–1728 (1990)

    Article  CAS  Google Scholar 

  49. K. Hattori, Y. Kido, H. Yamamoto, J. Ishida, K. Kamijo, K. Murano, M. Ohkubo, T. Kinoshita, A. Iwashita, K. Mihara, J. Med. Chem. 47, 4151–4154 (2004)

    Article  CAS  Google Scholar 

  50. M. Bakavoli, O. Sabzevari, M. Rahimizadeh, Chin. Chem. Lett. 18, 1466–1468 (2007)

    Article  CAS  Google Scholar 

  51. J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Tetrahedron Lett. 49, 3814–3818 (2008)

    Article  CAS  Google Scholar 

  52. M. Dabiri, P. Salehi, A.A. Mohammadi, M. Baghbanzadeh, Synth. Commun. 35, 279–287 (2005)

    Article  CAS  Google Scholar 

  53. M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh, G. Kozehgary, A.A. Mohammadi, Tetrahedron Lett. 46, 6123–6126 (2005)

    Article  CAS  Google Scholar 

  54. Y. Gao, Methods for Synthesizing Libraries of Dihydro-Quinazolinones, Patent No. 6,274,383. (2001)

  55. A. Shaabani, A. Maleki, H. Mofakham, Synth. Commun. 38, 3751–3759 (2008)

    Article  CAS  Google Scholar 

  56. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  57. S.C. Pang, S.Y. Kho, S.F. Chin, J. Nanomater 2012, 125 (2012)

    Google Scholar 

  58. J. Jiang, G. Oberdörster, P. Biswas, J. Nanoparticle Res. 11, 77–89 (2009)

    Article  CAS  Google Scholar 

  59. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207–219 (1998)

    Article  CAS  Google Scholar 

  60. J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, Tetrahedron 70, 5274–5282 (2014)

    Article  CAS  Google Scholar 

  61. X.-S. Wang, K. Yang, J. Zhou, S.-J. Tu, J. Comb. Chem. 12, 417–421 (2010)

    Article  CAS  Google Scholar 

  62. V.B. Rao, C. V Ratnam, Indian J. Chem. B. 18, 409–412 (1979)

    Google Scholar 

  63. D. Rambabu, S.K. Kumar, B.Y. Sreenivas, S. Sandra, A. Kandale, P. Misra, M.V.B. Rao, M. Pal, Tetrahedron Lett. 54, 495–501 (2013)

    Article  CAS  Google Scholar 

  64. H.L. Yale, J. Heterocycl. Chem. 14, 1357–1359 (1977)

    Article  CAS  Google Scholar 

  65. S. Santra, M. Rahman, A. Roy, A. Majee, A. Hajra, Catal. Commun. 49, 52–57 (2014)

    Article  CAS  Google Scholar 

  66. M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Chin. Chem. Lett. 22, 1423–1426 (2011)

    Article  CAS  Google Scholar 

  67. A. Ghorbani-Choghamarani, T. Taghipour, Lett. Org. Chem. 8, 470–476 (2011)

    Article  CAS  Google Scholar 

  68. R. Sharma, A.K. Pandey, P. Chauhan, Synlett 23, 2209–2214 (2012)

    Article  CAS  Google Scholar 

  69. A. Takács, A. Fodor, J. Németh, Z. Hell, Synth. Commun. 44, 2269–2275 (2014)

    Article  Google Scholar 

  70. M. Narasimhulu, Y.R. Lee, Tetrahedron 67, 9627–9634 (2011)

    Article  CAS  Google Scholar 

  71. B.-H. Chen, J.-T. Li, G.-F. Chen, Ultrason. Sonochem. 23, 59–65 (2015)

    Article  Google Scholar 

  72. M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Synthesis 2006, 344–348 (2006)

    Google Scholar 

  73. L. Rajaka, N.R. Penumati, K. Nagaiah, Y. Poornachandra, C.G. Kumar, Synth. Commun. 45, 1893–1901 (2015)

    Article  CAS  Google Scholar 

  74. Z.-H. Zhang, H.-Y. Lü, S.-H. Yang, J.-W. Gao, J. Comb. Chem. 12, 643–646 (2010)

    Article  CAS  Google Scholar 

  75. S. Guo, Y. Li, L. Tao, W. Zhang, X. Fan, RSC Adv. 4, 59289–59296 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Kari, T. & Aghaei, M. Fe3O4@SiO2@TiO2-OSO3H: an efficient hierarchical nanocatalyst for the organic quinazolines syntheses. J Porous Mater 24, 1481–1496 (2017). https://doi.org/10.1007/s10934-017-0388-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0388-z

Keywords

Navigation