Skip to main content
Log in

One-step synthesis of nitrogen-doped porous carbon for high performance supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We report a simple synthesis of nitrogen-doped porous carbon materials by one-step carbonization of pure sodium glutamate in inert atmosphere without any activation. The surface area, pore structure, and electrochemical properties of the resultant carbon materials can be tuned simply by changing the carbonization temperature. The carbon materials are characterized by heteroatom (N, O) doping, interconnected porous carbons framework with high surface area (1873 m2 g−1), large pore volume (1.10 cm3 g−1), and high yield. While the nitrogen content decreases from 7.15 at% at 600 °C to 4.03 at% at 900 °C. These features confer the as-obtained nitrogen-doped porous-carbon materials with high specific capacitance, good rate capability, and excellent cycling stability (88.15% of capacitance retention after 5000 cycles) in 2 M NaNO3 electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Chen, D. Xue, Rare earth and transitional metal colloidal supercapacitors. Sci. China Technol. Sci. 58 (11):1768–1778 (2015)

    Article  CAS  Google Scholar 

  2. K. Chen, D. Xue, Ionic Supercapacitor electrode materials: a system-level design of electrode and electrolyte for transforming ions into colloids. Coll. Interface Sci. Commun. 1, 39–42 (2014)

    Article  CAS  Google Scholar 

  3. W. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip. Rev. Energy Environ. 3(5), 424–473 (2014)

    Article  CAS  Google Scholar 

  4. K. Chen, F. Liu, D. Xue, S. Komarneni, Carbon with ultrahigh capacitance when graphene paper meets K3Fe (CN)6. Nanoscale 7(2), 432–439 (2015)

    Article  CAS  Google Scholar 

  5. B. Yi, X. Chen, B. Zeng, K. Guo, Z. Wan, Q. Qian, H. Yan, J. Chen, Gelatin-based activated carbon with carbon nanotubes as framework for electric double-layer capacitors. J. Porous. Mater. 19(1), 37–44 (2012)

    Article  CAS  Google Scholar 

  6. K. Chen, D. Xue, Colloidal supercapacitor electrode materials. Mater. Res. Bull. 83, 201–206 (2016)

    Article  CAS  Google Scholar 

  7. K. Chen, S. Song, K. Li, D. Xue, Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl2 electrodes. CrystEngComm. 15(47), 10367–10373 (2013)

    Article  CAS  Google Scholar 

  8. A.B. Fuertes, F. Pico, J.M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J. Power Sources 133(2), 329–336 (2004)

    Article  CAS  Google Scholar 

  9. C. Sun, Y. Zhang, S. Song, D. Xue, Tunnel-dependent supercapacitance of MnO2: effects of crystal structure. J. Appl. Crystallogr. 46(4), 1128–1135 (2013)

    Article  CAS  Google Scholar 

  10. K. Chen, W. Pan, D. Xue, Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C 120(36), 20077–20081 (2016)

    Article  CAS  Google Scholar 

  11. K. Chen, D. Xue, S. Komarneni, Colloidal pseudocapacitor: nanoscale aggregation of Mn colloids from MnCl 2 under alkaline condition. J. Power Sources 279, 365–371 (2015)

    Article  CAS  Google Scholar 

  12. K. Chen, D. Xue, High energy density hybrid supercapacitor: in-situ functionalization of vanadium-based colloidal cathode. ACS Appl. Mater. Interfaces 8(43):29522–29528 (2016)

    Article  CAS  Google Scholar 

  13. W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, F. Gao, Facile synthesis of hollow Co3 O4 boxes for high capacity supercapacitor. J. Power Sources 227, 101–105 (2013)

    Article  CAS  Google Scholar 

  14. Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, Y. Chu, A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochim. Acta 91, 173–178 (2013)

    Article  CAS  Google Scholar 

  15. F. Liu, D. Xue An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chemistry–A Eur. J. 19(32):10716–10722 (2013)

    Article  CAS  Google Scholar 

  16. K. Chen, S. Song, F. Liu, D. Xue, Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44(17), 6230–6257 (2015)

    Article  CAS  Google Scholar 

  17. K. Chen, F. Liu, S. Song, D. Xue, Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm. 16(33), 7771–7776 (2014)

    Article  CAS  Google Scholar 

  18. E. Ra, E. Raymundo-Piñero, Y. Lee, F. Béguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47(13), 2984–2992 (2009)

    Article  CAS  Google Scholar 

  19. G. Lota, K. Fic, E. Frackowiak, Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochem. Commun. 13(1), 38–41 (2011)

    Article  CAS  Google Scholar 

  20. Z. Wu, P.A. Webley, D. Zhao, Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J. Mater. Chem. 22(22), 11379–11389 (2012)

    Article  CAS  Google Scholar 

  21. Z. Lei, D. Bai, X. Zhao, Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. Microporous Mesoporous Mater. 147(1), 86–93 (2012)

    Article  Google Scholar 

  22. K. Jurewicz, K. Babeł, A. Źiółkowski, H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim. Acta 48(11), 1491–1498 (2003)

    Article  CAS  Google Scholar 

  23. K. Jurewicz, R. Pietrzak, P. Nowicki, H. Wachowska, Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochim. Acta 53(16), 5469–5475 (2008)

    Article  CAS  Google Scholar 

  24. Y. Liu, One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors. J. Porous Mater. 21(6), 1009–1014 (2014)

    Article  Google Scholar 

  25. D-s Yuan, T-x Zhou, S-l Zhou, W-j Zou, Mo S-s, N-n Xia, Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 13(3), 242–246 (2011)

    Article  CAS  Google Scholar 

  26. Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, Y. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950–7955 (2012)

    Article  CAS  Google Scholar 

  27. F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4(3), 717–724 (2011)

    Article  CAS  Google Scholar 

  28. L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, M. Antonietti, M.M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. mater. 22(45), 5202–5206 (2010)

    Article  CAS  Google Scholar 

  29. B. Xu, S. Hou, G. Cao, F. Wu, Y. Yang, Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22(36), 19088–19093 (2012)

    Article  CAS  Google Scholar 

  30. L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 48(13), 3778–3787 (2010)

    Article  CAS  Google Scholar 

  31. Y. Xia, R. Mokaya, Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem. Mater. 17(6), 1553–1560 (2005)

    Article  CAS  Google Scholar 

  32. J.S. Lee, X. Wang, H. Luo, G.A. Baker, S. Dai, Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 131(13), 4596–4597 (2009)

    Article  CAS  Google Scholar 

  33. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3(9), 1294–1301 (2010)

    Article  CAS  Google Scholar 

  34. B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J. Mater. Chem. A 1(14), 4565–4570 (2013)

    Article  CAS  Google Scholar 

  35. B. Xu, D. Zheng, M. Jia, G. Cao, Y. Yang, Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim. Acta 98, 176–182 (2013)

    Article  CAS  Google Scholar 

  36. D. Dollimore, P. Spooner, A. Turner, The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol. 4(2), 121–160 (1976)

    Article  CAS  Google Scholar 

  37. K.S. Walton, R.Q. Snurr, Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc. 129(27), 8552–8556 (2007)

    Article  CAS  Google Scholar 

  38. Y. Wang, F. Su, C.D. Wood, J.Y. Lee, X.S. Zhao, Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind. Eng Chem. Res. 47(7), 2294–2300 (2008)

    Article  CAS  Google Scholar 

  39. K. Kakaei, Decoration of graphene oxide with Platinum Tin nanoparticles for ethanol oxidation. Electrochim. Acta 165, 330–337 (2015)

    Article  CAS  Google Scholar 

  40. A. Kajdos, A. Kvit, F. Jones, J. Jagiello, G. Yushin, Tailoring the pore alignment for rapid ion transport in microporous carbons. J. Am. Chem. Soc. 132(10), 3252–3253 (2010)

    Article  CAS  Google Scholar 

  41. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8), 1731–1742 (2005)

    Article  CAS  Google Scholar 

  42. Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. Acs Nano 4(3), 1337–1344 (2010)

    Article  CAS  Google Scholar 

  43. R. Jansen, H. Van Bekkum, XPS of nitrogen-containing functional groups on activated carbon. Carbon 33(8), 1021–1027 (1995)

    Article  CAS  Google Scholar 

  44. A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J.M. Tascón, Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. Carbon 70, 119–129 (2014)

    Article  Google Scholar 

  45. Z. Lin, G. Waller, Y. Liu, M. Liu, C.P. Wong, Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2(7), 884–888 (2012)

    Article  CAS  Google Scholar 

  46. D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11(12), 5401–5407 (2011)

    Article  CAS  Google Scholar 

  47. L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25(28), 3899–3904 (2013)

    Article  CAS  Google Scholar 

  48. S.B. Kulkarni, U.M. Patil, I. Shackery, J.S. Sohn, S. Lee, B. Park, S. Jun, High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2(14), 4989–4998 (2014)

    Article  CAS  Google Scholar 

  49. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  CAS  Google Scholar 

  50. F. Ye, B. Zhao, R. Ran, Z. Shao, Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries. Chemistry–A Eur J. 20(14), 4055–4063 (2014)

    Article  CAS  Google Scholar 

  51. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19(3), 438–447 (2009)

    Article  CAS  Google Scholar 

  52. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Google Scholar 

  53. H. Luo, Y. Yang, X. Zhao, J. Zhang, Y. Chen, 3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors: direct carbonization of tartrate salt. Electrochim. Acta 169, 13–21 (2015)

    Article  CAS  Google Scholar 

  54. H. Luo, Y. Yang, B. Mu, Y. Chen, J. Zhang, X. Zhao, Facile synthesis of microporous carbon for supercapacitors with a LiNO3 electrolyte. Carbon 100, 214–222 (2016). doi:10.1016/j.carbon.2016.01.004

    Article  CAS  Google Scholar 

  55. B. Kishore, D. Shanmughasundaram, T.R. Penki, N. Munichandraiah, Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J. Appl. Electrochem. 44(8), 903–916 (2014)

    Article  CAS  Google Scholar 

  56. X. Zhao, H. Luo, K. Du, F. Zhang, Y. Li, Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors. J. Appl. Electrochem. 44(6), 719–725 (2014)

    Article  CAS  Google Scholar 

  57. Y. Wang, B. Chang, D. Guan, X. Dong, Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J. Solid State Electrochem. 19(6), 1783–1791 (2015)

    Article  CAS  Google Scholar 

  58. X. Li, J. Wang, Y. Zhao, F. Ge, S. Komarneni, Z. Cai, Wearable solid-state supercapacitors operating at high working voltage with a flexible nanocomposite electrode. ACS appl. mater. interfaces 8(39), 25905–25914 (2016)

    Article  CAS  Google Scholar 

  59. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  CAS  Google Scholar 

  60. J. Zhang, X. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance. ChemSus. Chem 5(5), 818–841 (2012)

    Article  CAS  Google Scholar 

  61. D. Hulicova, M. Kodama, H. Hatori, Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem. mater. 18(9), 2318–2326 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21364004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ming Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JQ., Li, P., Huang, SY. et al. One-step synthesis of nitrogen-doped porous carbon for high performance supercapacitors. J Porous Mater 24, 1363–1373 (2017). https://doi.org/10.1007/s10934-017-0378-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0378-1

Keywords

Navigation