Skip to main content
Log in

Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Polyimide (PI) aerogels cross-linked with a three amino compound tri(3-aminophenyl)phosphine oxide (TAPO) were synthesised by 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether (4,4′-ODA) through chemical imidization method. Supercritical CO2 was used for drying the PI gels to fabricate nanoporous aerogels with tunable densities ranging from 0.09 to 0.32 g/cm3, and the specific surface areas between 198 and 340 m2/g. To enhance the thermal stability of the BPDA-ODA-based PI aerogels, PMDA was introduced into the formulating oligomer chain. The results showed that with the increase of PMDA concentration, the 5 wt% thermal degradation temperature of PI aerogels could rise to around 600 °C and the glass transition temperature could increase from 269 to 306 °C, which makes them ideal insulation materials for aerospace and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.S. Kistler, A.G. Caldwell, Ind. Eng. Chem 26.6, 658–662 (1934)

    Article  CAS  Google Scholar 

  2. M. Moner-Girona et al., J. Non-Cryst. Solids 285(1–3), 244–250 (2001)

    Article  CAS  Google Scholar 

  3. D.P. Mohite et al., Chem. Mater. 24(17), 3434–3448 (2012)

    Article  CAS  Google Scholar 

  4. X. Wang, S.C. Jana, Langmuir 29.18,5589–5598 (2013)

    Article  CAS  Google Scholar 

  5. C. Chidambareswarapattar et al., Chem. Mater. 25(15), 3205–3224 (2013)

    Article  CAS  Google Scholar 

  6. N. Leventis et al., in Mrs Online Proceeding Library, vol 1306 (2011),p. 1306

  7. C. Tan et al., Adv. Mater. 13(9), 644–646 (2001)

    Article  CAS  Google Scholar 

  8. M. Yu, J. Li, L. Wang, J. Porous. Mater. 23(4), 997–1003 (2016)

    Article  CAS  Google Scholar 

  9. H.B. Chen et al., Polymer 55(1), 380–384 (2014)

    Article  CAS  Google Scholar 

  10. C. Chidambareswarapattar et al. J. Mater. Chem. 20(43), 9666–9678 (2010)

    Article  CAS  Google Scholar 

  11. Song He et al., Mater. Lett. 154, 107–111 (2015)

    Article  CAS  Google Scholar 

  12. B. Ding et al., J. Mater. Chem. 22(12), 5801–5809 (2012)

    Article  CAS  Google Scholar 

  13. J.P. Randall, M.A. Meador, S.C. Jana, ACS Appl. Mater. Interfaces 3(3), 613–626 (2011)

    Article  CAS  Google Scholar 

  14. M.A.B. Meador et al., ACS Appl. Mater. Interfaces 4(11), 6346–6353 (2012)

    Article  CAS  Google Scholar 

  15. H.L. Paul, K.R. Diller, J. Biomech. Eng. 125(5), 639–647 (2003)

    Article  Google Scholar 

  16. M.A. Meador et al., ACS Appl. Mater. Interfaces 6(9), 6062–6068 (2014)

    Article  CAS  Google Scholar 

  17. Y. Zhang et al., RSC Adv. 5(2), 1301–1308 (2014)

    Google Scholar 

  18. M.A. Meador et al., ACS Appl. Mater. Interfaces 4(2), 536–544 (2012)

    Article  CAS  Google Scholar 

  19. H. Guo et al., ACS Appl. Mater. Interfaces 3(2), 546–552 (2011)

    Article  CAS  Google Scholar 

  20. H. Guo et al., ACS Appl. Mater. Interfaces 4(10), 5422–5429 (2012)

    Article  CAS  Google Scholar 

  21. M.A. Meador et al., ACS Appl. Mater. Interfaces 7(2), 1240 (2015)

    Article  CAS  Google Scholar 

  22. J.C. Williams et al., Chem. Mater. 26(14), 4163–4171 (2014)

    Article  CAS  Google Scholar 

  23. N. Leventis et al., Chem. Mater. 23(8), 2250–2261 (2011)

    Article  CAS  Google Scholar 

  24. J. Kwon et al., Macromol. Mater. Eng. 299(9), 1081–1088 (2014)

    Article  CAS  Google Scholar 

  25. X. Pei, W. Zhai, W. Zheng, Langmuir 30(44), 13375–13383 (2014)

    Article  CAS  Google Scholar 

  26. J. Feng, et al., ACS Appl. Mater. Interfaces 8, 20 (2016)

    Article  Google Scholar 

  27. S. Agrawal, A.K. Narula, Polym. Bull. 70(12), 3241–3260 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (51673005). Also, the authors would like to thank the Key Laboratory of Aerospace Materials and Performance, Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11137 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, T., Wang, K. et al. Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide. J Porous Mater 24, 1353–1362 (2017). https://doi.org/10.1007/s10934-017-0377-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0377-2

Keywords

Navigation