Skip to main content
Log in

Novel high performance magnetic activated carbon for phenol removal: equilibrium, kinetics and thermodynamics

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of novel iron oxide based magnetic activated carbons (MAC) were fabricated through simple one-step method from Pomelo Peel using hydrochloric acid pickling water as chemical activation agent and iron oxide precursor. The characterizing results show that the MAC prepared through physiochemical activation at 973 K has a relative high surface area of 760 m2/g and can be fast separated from water under a moderate magnetic field. Batch adsorptions of phenol onto the MAC were investigated for its equilibrium, the kinetic modeling and thermodynamics. Equilibrium data were best described by Langmuir model, and the estimated maximum adsorption capacity of the MAC-973 was up to 1.1 × 102 mg/g at 298 K. Chemical reaction was found to be a rate-controlling parameter to this phenol-MAC batch adsorption system due to strong agreement with the pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.C. Chen, X.Q. Shan, Y.S. Wang, B. Wen, Z.G. Pei, Y.N. Xie, T. Liu, J.J. Pignatello, Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Res. 43, 2409–2418 (2009)

    Article  CAS  Google Scholar 

  2. S.M. Alshehri, M. Naushad, T. Ahamad, Z.A. Alothman, A. Aldalbahi, Synthesis, characterization of curcumin based eco friendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chem. Eng. J. 254, 181–189 (2014)

    Article  CAS  Google Scholar 

  3. J. Han, Z. Du, W. Zou, H. Li, C. Zhang, In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol. Chem. Eng. J. 262, 571–578 (2015)

    Article  CAS  Google Scholar 

  4. Z. Wang, X. Liu, M. Lv, J. Meng, Simple synthesis of magnetic mesoporous FeNi/ carbon composites with a large capacity for the immobilization of biomolecules. Carbon 11, 3182–3189 (2010)

    Article  Google Scholar 

  5. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. Wu, P. Ren, Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 115, 21–26 (2012)

    Article  CAS  Google Scholar 

  7. K.G. Raj, P.A. Joy, Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. J. Environ. Chem. Eng. 3, 2068–2075 (2015)

    Article  CAS  Google Scholar 

  8. Y.F. Zhu, E. Kockrick, S. Kaskel, T. Ikoma, N. Hanagata, Nanocasting route to ordered mesoporous carbon with FePt nanoparticles and its phenol adsorption property. J. Phys. Chem. C 113, 5998–6002 (2009)

    Article  CAS  Google Scholar 

  9. G.D. Yang, L. Tang, G.M. Zeng, Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem. Eng. J. 259, 854–864 (2015)

    Article  CAS  Google Scholar 

  10. D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 172, 1111–1125 (2011)

    Article  CAS  Google Scholar 

  11. L.C. Oliveira, R.V. Rios, J.D. Fabris, V. Garg, K. Sapag, R.M. Lago, Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40, 2177–2183 (2002)

    Article  CAS  Google Scholar 

  12. Sh.L. Zhang, L. Ch. Tao, M. Jiang, G.J. Gou. Z.W. Zhou, Single-step synthesis of magnetic activated carbon from peanut shell. Mater. Lett. 157, 281–284 (2015)

  13. Z.A. Zainal, R. Ali, C.H. Lean, K.N. Seetharamu. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy. Conversat. Manag. 42, 1499–1515 (2001).

    Article  CAS  Google Scholar 

  14. R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf, Hydrogen storage by carbon materials. J. Power Sources 159, 781–801 (2006)

    Article  Google Scholar 

  15. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12), 1799–1810 (1997)

    Article  CAS  Google Scholar 

  16. Y. Huang, Z. Dong, D. Jia, Z. Guo, W.I. Cho, Preparation and characterization of core–shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochim. Acta 56, 9233–9239 (2011)

    Article  CAS  Google Scholar 

  17. M.H. Do, N.H. Phan, T.D. Nguyen, T.T. Pham, V.K. Nguyen, T.T. Vu, T.K. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85(8), 1269–1276 (2011)

    Article  CAS  Google Scholar 

  18. L. Zhang, W.L. Jiao, J. He, A.J. Zhang, Synthesis of PAA/NiFe2O4 composite nanoparticles and the effect of microstructure on magnetism. J. Alloys Compd. 577, 538–542 (2013)

    Article  CAS  Google Scholar 

  19. A.A. Ahmad, B.H. Hameed, N. Aziz, Adsorption of direct dyes on palm ash: Kinetic and equilibrium modeling. J. Hazard. Mater. 141, 70–76 (2007)

    Article  CAS  Google Scholar 

  20. Y.S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. 136, 681–689 (2006)

    Article  CAS  Google Scholar 

  21. G. Dursun, H. Çiçek, A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. 125, 175–182 (2005)

    Article  CAS  Google Scholar 

  22. L. Zhang, X. Li, L.J. Yang, Y. Li, H. Chang, X. Chu, J. Zhang, X. Wang, S. An, A rapid and selective isolation of rhodium from aqueous solution using nano-Al2O3. J. Chem. Eng. Data 57(10), 2647–2653 (2012)

    Article  CAS  Google Scholar 

  23. R.S. Juang, F. Ch Wu, R.L. Tseng, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels. J. Colloid Interface Sci. 227, 437–444 (2000)

    Article  CAS  Google Scholar 

  24. I.D. Mall, V.C. Srivastava, N.K. Argawal. Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigments 69 (2006) 210–233.

    Article  CAS  Google Scholar 

  25. C. Ng, J.N. Losso, W.E. Marshall, R.R. Rao, Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin. Bioresour. Technol. 84, 177–185 (2002)

    Article  CAS  Google Scholar 

  26. T.W. Weber, R.K. Chakkravorti, Pore and solid diffusion models for fixed bed adsorbers. AIChE J. 20, 228–238 (1974)

    Article  CAS  Google Scholar 

  27. Y.F. Zhu, L.X. Zhang, F.M. Schappacher, R. Pöttgen, J.L. Shi, S. Kaskel, Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of phenol and nitrobenzene from aqueous solution. J. Phys. Chem. C 112, 8623–8628 (2008)

    Article  CAS  Google Scholar 

  28. N. Soudani, S. Souissi-najar, A. Ouederni, Influence of nitric acid concentration on characteristics of olive stone based activated carbon. Chin. J. Chem. Eng. 21, 1425–1430 (2013)

    Article  Google Scholar 

  29. A. Rathinam, J.R. Rao, B.U. Nair, Adsorption of phenol onto activated carbon from seaweed: Determination of the optimal experimental parameters using factorial design. J. Taiwan Inst. Chem. Eng. 42, 952–956 (2011)

    Article  CAS  Google Scholar 

  30. M. Kilic, E. Apaydin-Varol, A.E. Pütün, Hydrothermal treatment of electric arc furnace dust. J. Hazard. Mater. 189, 397–402 (2011)

    Article  CAS  Google Scholar 

  31. Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348–356 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Shandong Natural Science Foundation of China (ZR2014BL014), a Project of Shandong Province Higher Educational Science and Technology Program (J14LC54), a Project of Binzhou City science and technology development project (2014ZC0212) and Binzhou University (BZXYHZ20161010 and 201610449035) research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F. Novel high performance magnetic activated carbon for phenol removal: equilibrium, kinetics and thermodynamics. J Porous Mater 24, 1309–1317 (2017). https://doi.org/10.1007/s10934-017-0372-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0372-7

Keywords

Navigation