Skip to main content

Advertisement

Log in

Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The aim of this comprehensive review on materials for methane storage application is to understand which are the best conditions and the best materials for their use for the implementation of storage tank. The research was focused on two different families of samples that up to now appear like the most promising. In particular, Activated carbon and metal organic framework were analyzed and an overall picture was extrapolated. Analysis of the structural parameters and adsorption capacities were evaluated and relation between them were obtained. A comparison of values available in literature was done and, when possible, laboratory tests were performed. The presented results allow to identify potential materials with high specific storage capacity and to verify their performances in optimized conditions. This work represents the starting point for a real and efficient method to the methane storage as a starting point for the development of Adsorbed Natural Gas technology for static and/or automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Among the recent literature, it is possible to find studies of ANG systems but normally they are focused on the complete removal of the mercaptans from gas mixtures by, as an example, increasing mercaptan captivation in chemically modified carbons (see, e.g., Bashkova et al.—Ind. Eng. Chem. Res. 21 (2002) 4346–52). Actually, it is inconceivable that a significant deployment of ANG could be achieved without the basic safety mechanism of human detection of NG leaks from an ANG system.

References

  1. A. Celzard, V. Fierro, Preparing a suitable material designed for methane storage: a comprehensive report. Energy Fuels 19, 573–583 (2005)

    Article  CAS  Google Scholar 

  2. D. Lozano-Castelló, J. Alcañiz-Monge, M.A. de la Casa-Lillo, D. Cazorla-Amorós, A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials. Fuel 81, 1777–1803 (2002)

    Article  Google Scholar 

  3. M.E. Casco, M. Martínez-Escandell, E. Gadea-Ramos, K. Kaneko, J. Silvestre-Albero, F. Rodríguez-Reinoso, High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater. 27, 959–964 (2015)

    Article  CAS  Google Scholar 

  4. S. Ben Yahia, O. Abdelmottaleb, Pure Methane Storage on Olive Stones-based Activated Carbon for Vehicular Applications (International Renewable Energy Congress, Sousse, 2010), pp. 5–7

    Google Scholar 

  5. X.L. Wang, J. French, S. Kandadai, H.T. Chua, Adsorption measurements of methane on activated carbon in the temperature range (281 to 343) K and pressures to 1.2 MPa. J. Chem. Eng. Data 55, 2700–2706 (2010)

    Article  CAS  Google Scholar 

  6. J.A. Mason, M. Veenstra, J.R. Long, Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014)

    Article  CAS  Google Scholar 

  7. H. Frost, T. Düren, R.Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006)

    Article  CAS  Google Scholar 

  8. U.M. Nour, A.M. Tayeb, H.A. Farag, S. Awad, Enhanced discharge of ANG storage for vehicle use. Int. J. Eng. Technol. 9, 381–389 (2009)

    Google Scholar 

  9. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, D.F. Quinn, Activated carbon monoliths for methane storage: influence of binder. Carbon 40, 2817–2825 (2002)

    Article  Google Scholar 

  10. M. Beckner, A. Dailly, Adsorbed methane storage for vehicular applications. Appl. Energy 149, 69–74 (2015)

    Article  CAS  Google Scholar 

  11. T. Düren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)

    Article  Google Scholar 

  12. A. Policicchio, E. Maccallini, R.G. Agostino, F. Ciuchi, A. Aloise, G. Giordano, Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel 104, 813–821 (2013)

    Article  CAS  Google Scholar 

  13. M.K. Antoniou, A. Policicchio, K. Dimos, D. Gournis, M.A. Karakassides, R.G. Agostino, Naphthalene-based periodic nanoporous organosilicas: II. Hydrogen and methane adsorption and physicochemical study. Microporous Mesoporous Mater. 158, 332–338 (2012)

    Article  CAS  Google Scholar 

  14. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  CAS  Google Scholar 

  15. M. Beckner, A. Dailly, Hydrogen and methane storage in adsorbent materials for automotive applications. Int. J. Energy Res. 40, 91–99 (2015)

    Article  Google Scholar 

  16. M.K. Antoniou, E.K. Diamanti, A. Enotiadis, A. Policicchio, K. Dimos, F. Ciuchi et al., Methane storage in zeolite-like carbon materials. Microporous Mesoporous Mater. 188, 16–22 (2014)

    Article  CAS  Google Scholar 

  17. M. Delavar, A.A. Ghoreyshi, M.J.A.M. Irannejad, Experimental evaluation of methane adsorptionon granular activated carbon (GAC) and determination of model isotherm. World Acad. Sci. Eng. Technol. 38, 43–46 (2010)

    Google Scholar 

  18. Q.R. Zheng, Z.W. Zhu, X.H. Wang, Experimental studies of storage by adsorption of domestically used natural gas on activated carbon. Appl. Therm. Eng. 77, 134–141 (2015)

    Article  CAS  Google Scholar 

  19. M. Bastos-Neto, D.V. Canabrava, A.E.B. Torres, E. Rodriguez-Castellón, A. Jiménez-López, D.C.S. Azevedo et al., Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl. Surf. Sci. 253, 5721–5725 (2007)

    Article  CAS  Google Scholar 

  20. K. Konstas, T. Osl, Y. Yang, M. Batten, N. Burke, A.J. Hill et al., Methane storage in metal organic frameworks. J. Mater. Chem. 22, 16698–16708 (2012)

    Article  CAS  Google Scholar 

  21. Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013)

    Article  CAS  Google Scholar 

  22. Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal-organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)

    Article  CAS  Google Scholar 

  23. S. Ma, H.-C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010)

    Article  CAS  Google Scholar 

  24. Y. Zhou, Y. Wang, H. Chen, L. Zhou, Methane storage in wet activated carbon: studies on the charging/discharging process. Carbon 43, 2007–2012 (2005)

    Article  CAS  Google Scholar 

  25. G.-Q. Fu, L. Zhou, Experimental study on adsorptive storage of natural gas I. Impact of minor ethane on the storage capacity. Nat. Gas Chem. Ind. 25, 12–14 (2000)

    Google Scholar 

  26. G.-Q. Fu, L. Zhou, Experimental study on adsorptive storage of natural gas II. Impact of minor propane and butane on the storage capacity. Nat. Gas Chem. Ind. 25, 22–24 (2000)

    CAS  Google Scholar 

  27. J.P.B. Mota, Impact of gas composition on natural gas storage by adsorption. AIChE J. 45, 986–996 (1999)

    Article  CAS  Google Scholar 

  28. Y. Sun, C. Liu, W. Su, Y. Zhou, L. Zhou, Principles of methane adsorption and natural gas storage. Adsorption 15, 133–137 (2009)

    Article  CAS  Google Scholar 

  29. United States Federal Register 49 CFR 192.625(a) Canadian Standards Organization Z662-99 Sect. 4.17.1

  30. M. Golebiowska, M. Roth, L. Firlej, B. Kuchta, C. Wexler, The reversibility of the adsorption of methane–methyl mercaptan mixtures in nanoporous carbon. Carbon 50, 225–234 (2012)

    Article  CAS  Google Scholar 

  31. M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M, Co, Ni, Zn). Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)

    Article  CAS  Google Scholar 

  32. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    Article  CAS  Google Scholar 

  33. J.P. Marco-Lozar, M. Kunowsky, J.D. Carruthers, Á. Linares-Solano, Gas storage scale-up at room temperature on high density carbon materials. Carbon 76, 123–132 (2014)

    Article  CAS  Google Scholar 

  34. Y. Peng, G. Srinivas, C.E. Wilmer, I. Eryazici, R.Q. Snurr, J.T. Hupp et al., Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111. Chem. Commun. 49, 2992–2994 (2013)

    Article  CAS  Google Scholar 

  35. K.A. Rahman, W.S. Loh, H. Yanagi, A. Chakraborty, B.B. Saha, W.G. Chun et al., Experimental adsorption isotherm of methane onto activated carbon at sub- and supercritical temperatures. J. Chem. Eng. Data 55, 4961–4967 (2010)

    Article  CAS  Google Scholar 

  36. W.S. Loh, K.A. Rahman, A. Chakraborty, B.B. Saha, Y.S. Choo, B.C. Khoo et al., Improved isotherm data for adsorption of methane on activated carbons. J. Chem. Eng. Data 55, 2840–2847 (2010)

    Article  CAS  Google Scholar 

  37. K.A. Rahman, A. Chakraborty, B.B. Saha, K.C. Ng, On thermodynamics of methane +carbonaceous materials adsorption. Int. J. Heat Mass Transf. 55, 565–573 (2012)

    Article  CAS  Google Scholar 

  38. S. Biloe, V. Goetz, S. Mauran, Dynamic discharge and performance of a new adsorbent for natural gas storage. AIChE J. 47, 2819–2830 (2001)

    Article  CAS  Google Scholar 

  39. K.A. Rahman, W.S. Loh, A. Chakraborty, B.B. Saha, W.G. Chun, K.C. Ng, Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage. Appl. Therm. Eng. 31, 1630–1639 (2011)

    Article  CAS  Google Scholar 

  40. SpringerMaterials, Adsorption Database ID ads000583 (Springer, Berlin, 2013)

  41. Corporation MWV, Nuchar SA—Powdered Activated Carbon (2013)

  42. V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998)

    Article  CAS  Google Scholar 

  43. K.K. Robinson, R.L. Mieville, H. Schroeder, Development of Carbon Adsorption Blocks for Evaporative Loss Control (Mega-Carbon Company, 2003), p. 19

  44. Carbonitalia, Filtercarb PHA—Scheda Tecnica. 2013. p. Technical Datasheet

  45. co.inc. CC. GMS-70 Specification Sheet (2014)

  46. Inc. KCA. Bead-shaped Activated Carbon BAC (2014)

  47. Corporation MWV. Nuchar RGC—Powdered Activated Carbon (2013)

  48. S. Błažewicz, A. Świątkowski, B.J. Trznadel, The influence of heat treatment on activated carbon structure and porosity. Carbon 37, 693–700 (1999)

    Article  Google Scholar 

  49. SpringerMaterials, Adsorption Database ID ads000405 (Springer, Berlin, 2013)

  50. Norit, Norit Datasheet—Electronic Version. Norit Nederland8 (2007)

  51. Corporation CC, BPL Granular Activated Carbon (2014)

  52. B.P. Russell, M.D. Levan, Pore size distribution of BPL activated carbon determined by different methods. Carbon 32, 845–855 (1994)

    Article  CAS  Google Scholar 

  53. F.S. Baker, C.E. Miller, A.J. Repik, E.D. Tolles, Carbon, Activated. Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, London, 2000)

    Google Scholar 

  54. Carbonitalia, Filtercarb GCC 8x30—Scheda Tecnica. 2013. p. Technical Datasheet

  55. H.B. Mat, The Development of Adsorbent Based Natural Gas Storage for Vehicle Application (Universiti Teknologi Malaysia, Johor, 2006), pp. 1–153

    Google Scholar 

  56. Norit, Norit Datasheet—Electronic Version (Norit Americas Inc., 2012)

  57. A. Kumar, Adsorption of Methane on Activated Carbon by Volumetric Method (National Institute of Technology, Rourkela, 2011)

    Google Scholar 

  58. R.B. Rios, M. Bastos-Neto, M.R. Amora Jr., A.E.B. Torres, D.C.S. Azevedo, C.L. Cavalcante Jr., Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel 90, 113–119 (2011)

    Article  CAS  Google Scholar 

  59. Burchell T, Rogers M, Low Pressure Storage of Natural Gas for Vehicular Applications. Government/industry meeting ed. Washington, DC (2000)

  60. C. Guan, L.S. Loo, K. Wang, C. Yang, Methane storage in carbon pellets prepared via a binderless method. Energy Convers. Manag. 52, 1258–1262 (2011)

    Article  CAS  Google Scholar 

  61. K. Sapag, A. Vallone, A.G. Blanco, C. Solar, Adsorption of methane in porous materials as the basis for the storage of natural gas, in Natural gas, ed. by P. Polocnik (InTech, Croatia, 2010), p. 606

    Google Scholar 

  62. D. Donald, R.G.M. Schmidt, Saran Carbon—A Superior Adsorbent for Volatile Compounds (Dow Chemical, 1977), pp. 257–258

  63. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Can highly activated carbons be prepared with a homogeneous micropore size distribution? Fuel Process. Technol. 77–78, 325–330 (2002)

    Article  Google Scholar 

  64. Z.Z.T. George, The performance of commercial activated carbon absorbent for adsorbed natural gas storage. Int. J. Res. Rev. Appl. Sci. 9, 6 (2011)

    Google Scholar 

  65. C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant et al., Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013)

    Article  CAS  Google Scholar 

  66. D. Yuan, D. Zhao, D. Sun, H.C. Zhou, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. Engl. 49, 5357–5361 (2010)

    Article  CAS  Google Scholar 

  67. T.A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012)

    Article  CAS  Google Scholar 

  68. D. Liu, H. Wu, S. Wang, Z. Xie, J. Li, W. Lin, A high connectivity metal-organic framework with exceptional hydrogen and methane uptake capacities. Chem. Sci. 3, 3032–3037 (2012)

    Article  CAS  Google Scholar 

  69. H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009)

    Article  CAS  Google Scholar 

  70. Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen et al., A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011)

    Article  CAS  Google Scholar 

  71. J.L. Mendoza-Cortes, T.A. Pascal, W.A. Goddard, Design of covalent organic frameworks for methane storage. J. Phys. Chem. A 115, 13852–13857 (2011)

    Article  CAS  Google Scholar 

  72. S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130, 1012–1016 (2008)

    Article  CAS  Google Scholar 

  73. W. Zhou, Methane storage in porous metal-organic frameworks: current records and future perspectives. Chem. Rec. 10, 200–204 (2010)

    Article  CAS  Google Scholar 

  74. Aldrich S, HKUST-1, Cu-BTC, Basolite™ C300 produced by BASF (Sigma Aldrich, Germany, 2014)

  75. Aldrich S, MIL-53(Al), Basolite ® A100 Produced by BASF (Sigma Aldrich, Germany, 2014)

  76. R. Phani, P. Dinesh, K.P. Prasanth, S.S. Rajesh, R.V. Jasra, H.C. Bajaj, An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL-53(Al). J. Porous Mater. 17, 523–528 (2009)

    Google Scholar 

  77. D. Han, F.-L. Jiang, M.-Y. Wu, L. Chen, Q.-H. Chen, M.-C. Hong, A non-interpenetrated porous metal-organic framework with high gas-uptake capacity. Chem. Commun. 47, 9861–9863 (2011)

    Article  CAS  Google Scholar 

  78. D.P. Broom, C.J. Webb, K.E. Hurst, P.A. Parilla, T. Gennett, C.M. Brown et al., Outlook and challenges for hydrogen storage in nanoporous materials. Appl. Phys. A 122, 1–21 (2016)

    Article  CAS  Google Scholar 

  79. K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73, 81–88 (2004)

    Article  CAS  Google Scholar 

  80. K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser et al., Stability and hydrolyzation of metal organic frameworks with paddle-wheel sbus upon hydration. Chem. Mater. 24, 3153–3167 (2012)

    Article  CAS  Google Scholar 

  81. T. Wu, L. Shen, M. Luebbers, C. Hu, Q. Chen, Z. Ni et al., Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups. Chem. Commun. 46, 6120–6122 (2010)

    Article  CAS  Google Scholar 

  82. M. Bosch, M. Zhang, H.-C. Zhou, Increasing the stability of metal-organic frameworks. Adv. Chem. 2014, 8 (2014)

    Article  Google Scholar 

  83. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp et al., Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4, 83–89 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Landi Renzo S.p.a. for useful discussions and for sharing their knowledge about the methane technology applications in automotive sector. Financial support was provided by Landi Renzo S.p.a (www.landi.com) and REI Reggio Emilia Innovazione (www.reinnova.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Policicchio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Policicchio, A., Filosa, R., Abate, S. et al. Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. J Porous Mater 24, 905–922 (2017). https://doi.org/10.1007/s10934-016-0330-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0330-9

Keywords

Navigation