Skip to main content
Log in

Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silica-doped alumina aerogels offer the potential alternative to the applications as thermal insulators, catalysis, or catalytic support at elevated temperatures. However, the production process of silica-doped alumina aerogels was complicated and time-consuming. We developed a one-step precursor-to-aerogel method of silica-doped alumina aerogels with high specific surface area and thermal stability. Compared to conventional methods, the developed method reduced time and solvent waste of alumina-based aerogels production. Here, we investigated the alumina aerogels doped with silica to stabilize γ-phase at higher temperatures. XRD, FTIR, TEM, TG-DSC, and BET analysis results showed that silica stabilized the γ-Al2O3 at 1200 °C. The stabilization mechanism analysis showed that silica addition could significantly hinder the contact among alumina particles and the formation of necks in the sintering process, thereby retarding the transition of γ–θ phase and maintaining the high specific surface area at elevated temperatures. Silica and alumina particles formed mullite at 1200 °C, which could suppress α-phase transformation. In addition, silica-doped alumina aerogels exhibited the high specific surface area of 311 m2/g at 1000 °C and 146 m2/g at 1200 °C when the silica content was in the range of 10.6–13.1 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Ozawa, J. Alloys Compd. 408–412, 1090–1095 (2006)

    Article  Google Scholar 

  2. S.M. Jones, J. Sakamoto, Aerogels Handbook (Springer, Berlin, 2011), pp. 721–746

    Book  Google Scholar 

  3. F.I. Hurwitz et al., J. Sol-Gel Sci. Technol. 64(2), 367–374 (2012)

    Article  CAS  Google Scholar 

  4. F. He et al., J. Mater. Process. Technol. 209(3), 1621–1626 (2009)

    Article  CAS  Google Scholar 

  5. S. Gutzov et al., J. Sol-Gel Sci. Technol. 70(3), 511–516 (2014)

    Article  CAS  Google Scholar 

  6. P.B. Sarawade et al., Powder Technol. 197(3), 288–294 (2010)

    Article  CAS  Google Scholar 

  7. J. Zhu, S. Guo, X. Li, RSC Adv. 5(125), 103656–103661 (2015)

    Article  CAS  Google Scholar 

  8. H. Tatsuro et al., J. Non-Cryst. Solids 2001(291), 187–198 (2001)

    Google Scholar 

  9. L. Xu et al., Ceram. Int. 41(1), 437–442 (2015)

    Article  Google Scholar 

  10. S.J. Juhl et al., J. Non-Cryst. Solids 426, 141–149 (2015)

    Article  CAS  Google Scholar 

  11. X. Wu et al., Ceram. Int. 42(1), 874–882 (2016)

    Article  CAS  Google Scholar 

  12. X. Wu et al., RSC Adv. 6(7), 5611–5620 (2016)

    Article  CAS  Google Scholar 

  13. G. Zu et al., Chem. Mater. 26(19), 5761–5772 (2014)

    Article  CAS  Google Scholar 

  14. J.F. Poco, J.H. Satcher Jr., L.W. Hrubesh, J. Non-Cryst. Solids 2001(285), 57–63 (2001)

    Article  Google Scholar 

  15. G. Zu et al., Chem. Mater. 25(23), 4757–4764 (2013)

    Article  CAS  Google Scholar 

  16. D.B. Mahadik et al., J. Supercrit. Fluids 107, 84–91 (2016)

    Article  CAS  Google Scholar 

  17. A. Boumaza et al., J. Solid State Chem. 182(5), 1171–1176 (2009)

    Article  CAS  Google Scholar 

  18. A.H. Munhoz Jr. et al., Advances in Science and Technology (Trans Tech Publications, Germany, 2010)

    Google Scholar 

  19. X. Zhang et al., J. Cryst. Growth 310(15), 3674–3679 (2008)

    Article  CAS  Google Scholar 

  20. M.A. Saltzberg et al., J. Am. Ceram. Soc. 75(1), 89–95 (1992)

    Article  CAS  Google Scholar 

  21. J.J. Liang et al., J. Mater. Sci. Technol. (2016). doi:10.1016/j.jmst.2016.02.012

  22. M. Zawrah, E. Hamzawy, Ceram. Int. 28(2), 123–130 (2002)

    Article  CAS  Google Scholar 

  23. S.-W. Kim, S. Iwamoto, M. Inoue, J. Porous Mater. 17(3), 377–385 (2009)

    Article  Google Scholar 

  24. Y. Zhu et al., Ind. Eng. Chem. Res. 51(1), 255–261 (2012)

    Article  CAS  Google Scholar 

  25. S.A. Dickie, A.J. McQuillan, Langmuir 20(26), 11630–11636 (2004)

    Article  CAS  Google Scholar 

  26. J. Lee, S. Yu, J. Mater. Sci. 27(19), 5203–5208 (1992)

    Article  CAS  Google Scholar 

  27. J. Wang et al., Microporous Mesoporous Mater. 218, 192–198 (2015)

    Article  CAS  Google Scholar 

  28. G. Zu et al., J. Non-Cryst. Solids 357(15), 2903–2906 (2011)

    Article  CAS  Google Scholar 

  29. T.F. Baumann et al., Chem. Mater. 17(2), 395–401 (2005)

    Article  CAS  Google Scholar 

  30. D. Sarkar et al., Ceram. Int. 33(7), 1275–1282 (2007)

    Article  CAS  Google Scholar 

  31. C.F. Diniz, K. Balzuweit, N.D.S. Mohallem, J. Nanopart. Res. 9(2), 293–300 (2006)

    Article  Google Scholar 

  32. X. Chen et al., Appl. Catal. A 205(1), 159–172 (2001)

    Article  CAS  Google Scholar 

  33. P. Alphonse, B. Faure, Microporous Mesoporous Mater. 196, 191–198 (2014)

    Article  CAS  Google Scholar 

  34. N. Al-Yassir, R. Le Van Mao, Appl. Catal. A 317(2), 275–283 (2007)

    Article  CAS  Google Scholar 

  35. T. Horiuchi et al., Catal. Lett. 58(2–3), 89–92 (1999)

    Article  CAS  Google Scholar 

  36. F. Jian et al., Chin. J. Inorg. Chem. 25(10), 1758–1763 (2009)

    Google Scholar 

  37. A.P. Hynes, R.H. Doremus, J. Am. Ceram. Soc. 74(10), 2469–2475 (1991)

    Article  CAS  Google Scholar 

  38. S.H. Hong, G.L. Messing, J. Am. Ceram. Soc. 81(5), 1269–1277 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Basic Research Program of China (973 Program, Grant No. 2015CB057502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, Q., Wang, T. et al. Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures. J Porous Mater 24, 889–897 (2017). https://doi.org/10.1007/s10934-016-0328-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0328-3

Keywords

Navigation