Skip to main content
Log in

Synthesis and characterization of magnetic mesoporous core–shell nanocomposites for targeted drug delivery applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Magnetic mesoporous nanocomposites are emerging as a significant new material to improve the effectiveness of cancer treatment and enhance the availability of drug therapy. Thus, the core–shell structure magnetic mesoporous nanocomposites (Fe3O4@SiO2@LDH) were synthesized with an average diameter of about 100 nm and used as methotrexate (MTX) carriers for cancer therapy. As an important biological material, Fe3O4@SiO2@LDH exhibited higher superparamagnetic behavior and biocompatibility, and the drugs can be loaded in the channels of the mesoporous silica and the interlayer of layered double hydroxides (LDH). The embedding rate of magnetic mesoporous silica (Fe3O4@SiO2) and LDH were 60.32 % and 0.67 %, respectively, and the release rate of the drug delivery systems (Fe3O4@SiO2@LDH-MTX) was 66.81 %. In addition, LDH as a kind of pH-sensitive material was adopted for controlled drug release and WST-1 assays in cancer cells (Hela) demonstrated that Fe3O4@SiO2@LDH-MTX presented high anti-tumor activity, while the carriers were nearly non-toxic. Therefore, all the results suggested that the magnetic nanocomposites can be employed to deliver MTX, and would be applied in the field of cancer therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  2. E. Ruoslahti, S.N. Bhatia, M.J. Sailor, J. Cell. 188, 759–768 (2010)

    Article  CAS  Google Scholar 

  3. J. Wu, W. Jiang, S.S. Xu, Y.J. Wang, R. Tian, Sens. Actuators B: Chem. 211, 33–41 (2015)

    Article  CAS  Google Scholar 

  4. I.I. Slowing, J. Mater. Chem. 20, 7924–7937 (2010)

    Article  CAS  Google Scholar 

  5. S.S. Huang, C.X. Li, Z.Y. Cheng, Y. Fan, P.P. Yang, C.M. Zhang, K.Y. Yang, J. Lin, J. Colloid Interface Sci. 376, 312–321 (2012)

    Article  CAS  Google Scholar 

  6. X. Tian, Z. Dong, R. Wang, J. Ma, Sens. Actuators, B 183, 446–453 (2013)

    Article  CAS  Google Scholar 

  7. J. Wu, Y.J. Wang, W. Jiang, S.S. Xu, R.B. Tian, Appl. Surf. Sci. 321, 43–49 (2014)

    Article  CAS  Google Scholar 

  8. K.H. Shim, J. Hulme, E.H. Maeng, M.K. Kim, S.S. An, Int. J. Nanomed. 9, 207–215 (2014)

    Article  Google Scholar 

  9. J. Wang, R.R. Zhu, B. Gao, B. Wu, K. Li, X.Y. Sun, H. Liu, S.L. Wang, Biomaterials 35, 466–478 (2014)

    Article  CAS  Google Scholar 

  10. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, JACS 130, 28–29 (2008)

    Article  CAS  Google Scholar 

  11. Q. Liu, J.X. Zhang, W. Sun, Q.R.B. Xie, W.L. Xia, H.C. Gu, Int. J. Nanomed. 7, 999–1013 (2012)

    CAS  Google Scholar 

  12. X. Guo, F. Mao, W. Wang, Y. Yang, Z. Bai, A.C.S. Appl, Mat. Interfaces 7, 14983–14991 (2015)

    Article  CAS  Google Scholar 

  13. J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.-Y. Lin, Small 6, 1952–1967 (2010)

    Article  CAS  Google Scholar 

  14. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005)

    Article  CAS  Google Scholar 

  15. C.E. Myers, W.P. Mcguire, R.H. Liss, I. Ifrim, K. Grotzinger, R.C. Young, Science 197, 165–167 (1977)

    Article  CAS  Google Scholar 

  16. L.E. Gerweck, K. Seetharaman, Cancer Res. 56, 1194–1198 (1996)

    CAS  Google Scholar 

  17. J. Zhang, X. Li, J.M. Rosenholm, H.C. Gu, J. Colloid Interface Sci. 361, 16–24 (2011)

    Article  CAS  Google Scholar 

  18. Y. Chen, H.G. Chen, S.J. Zhang, F. Chen, L.X. Zhang, J.M. Zhang, M. Zhu, H.X. Wu, L.M. Guo, J.W. Feng, J.L. Shi, Adv. Funct. Mater. 21, 270–278 (2011)

    Article  CAS  Google Scholar 

  19. C.Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S. Lin, J. Am. Chem. Soc. 125, 4451–4459 (2003)

    Article  CAS  Google Scholar 

  20. K.M. Tyner, S.R. Schiffman, E.P. Giannelis, J. Control Release 95, 501–514 (2004)

    Article  CAS  Google Scholar 

  21. A. Tarnawski, R. Pai, R. Itani, F.A. Wyle, Digestion 60, 449–455 (1999)

    Article  CAS  Google Scholar 

  22. Z. Gu, A.C. Thomas, Z.P. Xu, J.H. Campbell, G.Q. Lu, Chem. Mater. 20, 3715–3722 (2008)

    Article  CAS  Google Scholar 

  23. J.H. Wang, S.R. Zheng, Y. Shao, J.L. Liu, Z.Y. Xu, J. Colloid Interface Sci. 349, 293–299 (2010)

    Article  CAS  Google Scholar 

  24. J. Wu, S.S. Xu, W. Jiang, Y. Shen, M. Pu, Biotechnol. Lett. 3, 585–591 (2015)

    Article  Google Scholar 

  25. J. Varshosaz, H. Sadeghi-aliabadi, S. Ghasemi, B. Behdadfar, Biomed. Res. Int. 2013, 1–16 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for National Science Foundation of China (No. 50972060), the Fundamental Research Funds for the Central Universities (No. 30920130112003) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wu, J., Tian, R. et al. Synthesis and characterization of magnetic mesoporous core–shell nanocomposites for targeted drug delivery applications. J Porous Mater 24, 257–265 (2017). https://doi.org/10.1007/s10934-016-0259-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0259-z

Keywords

Navigation