Skip to main content
Log in

Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Magnetic NaY zeolite immobilized with 1-butyl-3-methylimidazolium tetrachloroferrate ([bmim]Cl/FeCl3) ionic liquid as a reusable, efficient, and easily separable adsorbent was synthesized to remove dibenzothiophene from n-hexane. SEM–EDX, FT-IR were used for characterization of the synthesized magnetic sorbent. The prepared ionic liquid was characterized by with NMR, and mass spectrometry. The magnetic property of the sorbent was considered by VSM method. The obtained saturation magnetization of 19.5 emu g−1 confirmed the facile separation of magnetic zeolite immobilized with [bmim]Cl/FeCl3 after adsorption process. Central composite design was applied to predict the proposed process and to achieve the optimum conditions for three influential parameters of temperature, time, and sorbent mass. At the predicted conditions, temperature of 23.2 °C, time of 24.7 min, and sorbent mass of 0.836 g, the sulfur removal of 97.9 ± 0.5 % was experimentally obtained which was close to the model sulfur removal prediction of 98.4 %. This noticeable agreement proved the proper and acceptable estimation of the central composite design model for the proposed process. The experimental data were reasonably fitted to the Langmuir and Freundlich model which shows that the sorption takes place on a heterogeneous material. The sorption capacities of 2.957 (mg g−1) were achieved from sorption isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.A. Alves, M.G. Scotto, M.d.C. Freitas, Quim. Nova 33, 337–344 (2010)

    Article  CAS  Google Scholar 

  2. I. Matyasovszky, L. Makra, B. Bálint, Z. Guba, Z. Sümeghy, Atmos. Environ. 45, 4152–4159 (2011)

    Article  CAS  Google Scholar 

  3. EPA, Rep. EPA/600/R-08/047F (2008)

  4. P.S. Kulkarni, C.A. Afonso, Green Chem. 12, 1139–1149 (2010)

    Article  CAS  Google Scholar 

  5. L. Yang, X. Li, A. Wang, R. Prins, Y. Chen, X. Duan, J. Catal. 330, 330–343 (2015)

    Article  CAS  Google Scholar 

  6. P. Verdía, E.J. González, B. Rodríguez-Cabo, E. Tojo, Green Chem. 13, 2768–2776 (2011)

    Article  Google Scholar 

  7. B. Rodríguez-Cabo, A. Soto, A. Arce, J. Chem. Thermodyn. 57, 248–255 (2013)

    Article  Google Scholar 

  8. C.D. Wilfred, C.F. Kiat, Z. Man, M.A. Bustam, M.I.M. Mutalib, C.Z. Phak, Fuel Process. Technol. 93, 85–89 (2012)

    Article  CAS  Google Scholar 

  9. B. Rodríguez-Cabo, M. Francisco, A. Soto, A. Arce, Fluid Phase Equilib. 314, 107–112 (2012)

    Article  Google Scholar 

  10. Y. Nie, Y. Dong, L. Bai, H. Dong, X. Zhang, Fuel 103, 997–1002 (2013)

    Article  CAS  Google Scholar 

  11. S. Velu, X. Ma, C. Song, Am. Chem. Soc. Div. Fuel Chem. Prep. 47, 447–448 (2002)

    CAS  Google Scholar 

  12. A.J. Hernández-Maldonado, R.T. Yang, J. Am. Chem. Soc. 126, 992–993 (2004)

    Article  Google Scholar 

  13. T. Zaki, N.H. Mohamed, M.I. Nessim, H.A. El Salam, Fuel Process. Technol. 106, 625–630 (2012)

    Article  Google Scholar 

  14. Y. Wang, R.T. Yang, Langmuir 23, 3825–3831 (2007)

    Article  CAS  Google Scholar 

  15. Y. Bi, H. Nie, D. Li, S. Zeng, Q. Yang, M. Li, Chem. Commun. 46, 7430–7432 (2010)

    Article  CAS  Google Scholar 

  16. S. Dadfarnia, A.M. Haji Shabani, M. Shirani Bidabadi, A.A. Jafari, J. Hazard. Mater. 173, 534–538 (2010)

    Article  CAS  Google Scholar 

  17. W. Liu, L. Cheng, Y. Zhang, H. Wang, M. Yu, J. Mol. Liq. 140, 68–72 (2008)

    Article  CAS  Google Scholar 

  18. L. Vidal, E. Psillakis, C.E. Domini, N. Grané, F. Marken, A. Canals, Anal. Chim. Acta 584, 189–195 (2007)

    Article  CAS  Google Scholar 

  19. F. Tian, X. Yang, Y. Shi, C. Jia, Y. Chen, J. Nat. Gas Chem. 21, 647–652 (2012)

    Article  CAS  Google Scholar 

  20. J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energy 113, 78–85 (2014)

    Article  CAS  Google Scholar 

  21. P. Misaelides, Microporous Mesoporous Mater. 144, 15–18 (2011)

    Article  CAS  Google Scholar 

  22. M. Shirani, A. Semnani, H. Haddadi, S. Habibollahi, Water Air Soil Pollut. 225, 1–15 (2014)

    Article  CAS  Google Scholar 

  23. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Comptes Rendus Chimie 17, 108–117 (2014)

    Article  CAS  Google Scholar 

  24. N.H. Mthombeni, M.S. Onyango, O. Aoyi, J. Taiwan INST Chem. E 50, 242–251 (2015)

    Article  CAS  Google Scholar 

  25. S. Dharaskar, K. Wasewar, M. Varma, D. Shende, C.K. Yoo, Ind. Eng. Chem. Res. 54, 2260 (2015)

    Article  CAS  Google Scholar 

  26. F.-T. Li, C.-G. Kou, Z.-M. Sun, Y.-J. Hao, R.-H. Liu, D.-S. Zhao, J. Hazard. Mater. 205, 164–170 (2012)

    Article  Google Scholar 

  27. Y. Wang, H. Li, W. Zhu, X. Jiang, L. He, J. Lu, Y. Yan, Pet. Sci. Technol. 28, 1203–1210 (2010)

    Article  CAS  Google Scholar 

  28. F.-T. Li, R.-H. Liu, J.-H. Wen, D.-S. Zhao, Z.-M. Sun, Y. Liu, Green Chem. 11, 883–888 (2009)

    Article  CAS  Google Scholar 

  29. X. Sun, S. Zhao, Chin. J. Chem. Eng. 14, 289–293 (2006)

    Article  Google Scholar 

  30. C. DeCastro, E. Sauvage, M. Valkenberg, W.F. Hoelderich, J. Catal. 196, 86–94 (2000)

    Article  CAS  Google Scholar 

  31. N. Kannan, T. Veemaraj, J. Chem. 6, 247–256 (2009)

    CAS  Google Scholar 

  32. B. Qi, X. Chen, F. Shen, Y. Su, Y. Wan, Ind. Eng. Chem. Res. 48, 7346–7353 (2009)

    Article  CAS  Google Scholar 

  33. D.C. Montgomery, Design and Analysis of Experiments (Wiley, London, 2006)

    Google Scholar 

  34. M. Shirani, H.S. Ghaziaskar, C. Xu, Fuel Process. Technol. 124, 206–211 (2014)

    Article  CAS  Google Scholar 

  35. S. Xuewen, Z. Suoqi, Z. Min, Petrol. Sci 2, 77–81 (2005)

    Google Scholar 

  36. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, J. Colloid Interface Sci. 393, 445–451 (2013)

    Article  CAS  Google Scholar 

  37. F. Banat, S. Al-Asheh, D. Al-Rousan, Adsorpt. Sci. Technol. 20, 319–335 (2002)

    Article  CAS  Google Scholar 

  38. T. Ho, H. Chu, J. Hopper, Waste Manag. 13, 455–466 (1993)

    Article  CAS  Google Scholar 

  39. D. Mohan, S. Chander, J. Colloid Interface Sci. 299, 76–87 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this project by Shahrekord University and Payame Noor University is appreciated. The authors were also partially supported by the Center of Excellence for Mathematics, Shahrekord University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Semnani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No humans are involved in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirani, M., Semnani, A., Habibollahi, S. et al. Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology. J Porous Mater 23, 701–712 (2016). https://doi.org/10.1007/s10934-016-0125-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0125-z

Keywords

Navigation