Skip to main content
Log in

Bi-layered porous constructs of PCL-coated 45S5 bioactive glass and electrospun collagen-PCL fibers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A simple yet promising approach to construct bi-layered scaffolds using bioactive ceramics and biodegradable polymers is presented. This method involves two versatile fabrication techniques used in the field of TE: foam replication process and electrospinning. By the foam replication method, three-dimensional 45S5 bioactive glass (BG)-based scaffolds with high porosity, in the range of 95.8 ± 0.9 %, were produced. To improve the mechanical properties of the BG scaffolds, dip-coating using polycaprolactone (PCL) was performed, which led to a significant increase in the compressive strength of the scaffolds. In order to develop a bi-layered construct, bead-less submicrometric fibers of collagen-PCL were electrospun over the PCL-coated BG scaffolds. Surface morphology, surface properties and mechanical strength of the bi-layered construct were evaluated using scanning electron microscopy analysis, contact angle measurements and compressive strength testing, respectively. In vitro degradation of the collagen-PCL fibers in phosphate buffered saline and in vitro bioactivity of the bi-layered constructs in simulated body fluid were investigated. Formation of hydroxyapatite on the PCL-coated BG and along the morphology of the collagen-PCL fibers was ascertained using different characterization techniques. The bi-layered construct is intended for interface tissue engineering applications where the PCL-coated BG scaffold, which is highly bioactive, can serve as a support for the bone side and the composite collagen-PCL submicrometric fibers are intended for the cartilage side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.J. Castro, S.A. Hacking, L.G. Zhang, Ann. Biomed. Eng. 40, 1628 (2012)

    Article  Google Scholar 

  2. R. Langer, J.P. Vacanti, Science 260, 920 (1993)

    Article  CAS  Google Scholar 

  3. D.W. Sommerfeldt, C.T. Rubin, Eur. Spine J. 10(Suppl 2), S86 (2001)

    Google Scholar 

  4. J.M. Mansour, in Kinesiology: the mechanics and pathomechanics of human movement, ed. By C. A. Oatis (Lippincott Williams and Wilkins, Philadelphia, 2003), p. 66

  5. B. Scopp, J. Mandelbaum, Orthop. Sport. Med. Board Rev. Man. 2, 1 (2005)

    Google Scholar 

  6. S.P. Nukavarapu, D.L. Dorcemus, Biotechnol. Adv. 31, 706 (2013)

    Article  CAS  Google Scholar 

  7. I. Martin, S. Miot, A. Barbero, M. Jakob, D. Wendt, J. Biomech. 40, 750 (2007)

    Article  Google Scholar 

  8. P. Nooeaid, V. Salih, J.P. Beier, A.R. Boccaccini, J. Cell Mol. Med. 16, 2247 (2012)

    Article  CAS  Google Scholar 

  9. T.J. Levingstone, A. Matsiko, G. Dickson, F.J. O’Brien, J.P. Gleeson, Acta Biomater. 10, 1996 (2014)

    Article  CAS  Google Scholar 

  10. L. Liverani, J.A. Roether, P. Nooeaid, M. Trombetta, D.W. Schubert, A.R. Boccaccini, Mater. Sci. Eng. A 557, 54 (2012)

    Article  CAS  Google Scholar 

  11. D.M. Yunos, Z. Ahmad, V. Salih, A.R. Boccaccini, J. Biomater. Appl. 27, 537 (2013)

    Article  CAS  Google Scholar 

  12. L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006)

    Article  CAS  Google Scholar 

  13. P. Balasubramanian, M. Prabhakaran, M. Sireesha, S. Ramakrishna, Adv. Polym. Sci. 251, 173 (2013)

    Article  CAS  Google Scholar 

  14. F.C. Linn, L. Sokoloff, Arthritis Rheum. 8, 481 (1965)

    Article  CAS  Google Scholar 

  15. A. Cipitria, A. Skelton, T.R. Dargaville, P.D. Dalton, D.W. Hutmacher, J. Mater. Chem. 21, 9419 (2011)

    Article  CAS  Google Scholar 

  16. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials 27, 2414 (2006)

    Article  CAS  Google Scholar 

  17. D. Mohamad Yunos, O. Bretcanu, A. R. Boccaccini, J. Mater. Sci. 43, 4433 (2008)

  18. S. Dorozhkin, T. Ajaal, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 223, 459 (2009)

    Article  CAS  Google Scholar 

  19. W.-E. Teo, W. He, S. Ramakrishna, Biotechnol. J. 1, 918 (2006)

    Article  CAS  Google Scholar 

  20. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006)

    Article  CAS  Google Scholar 

  21. Q.Z. Chen, A.R. Boccaccini, J. Biomed. Mater. Res. A 77, 445 (2006)

    Article  CAS  Google Scholar 

  22. K.L. Menzies, L. Jones, Optom. Vis. Sci. 87, 387 (2010)

    Google Scholar 

  23. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)

    Article  CAS  Google Scholar 

  24. O. Bretcanu, S. Misra, I. Roy, C. Renghini, F. Fiori, A.R. Boccaccini, V. Salih, J. Tissue Eng. Regen. Med. 3, 139 (2009)

    Article  CAS  Google Scholar 

  25. F. Tan, M. Naciri, M. Al-Rubeai, Biotechnol. Bioeng. 108, 454 (2011)

    Article  CAS  Google Scholar 

  26. M.A. Alvarez-Perez, V. Guarino, V. Cirillo, L. Ambrosio, Biomacromolecules 11, 2238 (2010)

    Article  CAS  Google Scholar 

  27. R. Ravichandran, J.R. Venugopal, S. Sundarrajan, S. Mukherjee, S. Ramakrishna, World J. Cardiol. 5, 28 (2013)

    Article  Google Scholar 

  28. P. Nooeaid, J.A. Roether, E. Weber, D.W. Schubert, A.R. Boccaccini, Adv. Eng. Mater. 16, 319 (2014)

  29. O. Bretcanu, A.R. Boccaccini, V. Salih, J. Mater. Sci. 47, 5661 (2012)

    Article  CAS  Google Scholar 

  30. J.M. Hackett, T.T. Dang, E.C. Tsai, X. Cao, Materials (Basel). 3, 3714 (2010)

    Article  CAS  Google Scholar 

  31. J. Venugopal, Y.Z. Zhang, S. Ramakrishna, Nanotechnology 16, 2138 (2005)

    Article  CAS  Google Scholar 

  32. A.K. Bassi, J.E. Gough, M. Zakikhani, S. Downes, J. Tissue Eng. 2011, 1 (2011)

    Google Scholar 

  33. D.M. Yunos, Z. Ahmad, A.R. Boccaccini, J. Chem. Technol. Biotechnol. 85, 768 (2009)

    Article  Google Scholar 

  34. M. Bil, J. Ryszkowska, J.A. Roether, O. Bretcanu, A.R. Boccaccini, Biomed. Mater. 2, 93 (2007)

  35. J. Huang, L. Di Silvio, M. Wang, I. Rehman, C. Ohtsuki, W. Bonfield, J. Mater. Sci. Mater. Med. 8, 809 (1997)

    Article  CAS  Google Scholar 

  36. J. Roether, A. Boccaccini, L. Hench, V. Maquet, S. Gautier, R. Jérôme, Biomaterials 23, 3871 (2002)

    Article  CAS  Google Scholar 

  37. J. Hum, K.W. Luczynski, P. Nooeaid, P. Newby, O. Lahayne, C. Hellmich, A.R. Boccaccini, Strain 49, 431 (2013)

    CAS  Google Scholar 

  38. A. Philippart, A.R. Boccaccini, C. Fleck, D.W. Schubert, J.A. Roether, Expert Rev. Med. Devices 12, 93 (2015)

    Article  CAS  Google Scholar 

  39. M.P. Wolcott, Mater. Sci. Eng. A 123, 282 (1990)

    Article  Google Scholar 

  40. T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, S.S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005)

    Article  CAS  Google Scholar 

  41. S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, Z. Ma, In An Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005), p. 382

    Book  Google Scholar 

  42. J.M. Coburn, M. Gibson, S. Monagle, Z. Patterson, J.H. Elisseeff, Proc. Natl. Acad. Sci. 109, 10012 (2012)

    Article  CAS  Google Scholar 

  43. N.W. Garrigues, D. Little, J. Sanchez-Adams, D.S. Ruch, F. Guilak, J. Biomed. Mater. Res. A 59784, 28 (2013)

    Google Scholar 

  44. A. Thorvaldsson, H. Stenhamre, P. Gatenholm, P. Walkenström, Biomacromolecules 9, 1044 (2008)

    Article  CAS  Google Scholar 

  45. M.E. Casper, J.S. Fitzsimmons, J.J. Stone, A.O. Meza, Y. Huang, T.J. Ruesink, S.W. O’Driscoll, G.G. Reinholz, Osteoarthritis Cartilage 18, 981 (2010)

    Article  CAS  Google Scholar 

  46. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Mater. Sci. Eng. A 362, 40 (2003)

    Article  Google Scholar 

  47. B.L. Schumacher, J.A. Block, T.M. Schmid, M.B. Aydelotte, K.E. Kuettner, Arch. Biochem. Biophys. 311, 144 (1994)

    Article  CAS  Google Scholar 

  48. H. Mitsuyama, R.M. Healey, R.A. Terkeltaub, R.D. Coutts, D. Amiel, Osteoarthr. Cartil. 15, 559 (2007)

    Article  CAS  Google Scholar 

  49. Q. Yao, P. Nooeaid, R. Detsch, J.A. Roether, Y. Dong, O.-M. Goudouri, D.W. Schubert, A.R. Boccaccini, J. Biomed. Mater. Res. A. 102, 4510 (2014)

    Google Scholar 

  50. P. Gentile, V. Chiono, C. Tonda-Turo, C. Mattu, F. Baino, C. Vitale-Brovarone, G. Clardelli, Mater. Lett. 89, 74 (2012)

    Article  CAS  Google Scholar 

  51. P. Gentile, M. Mattioli-Belmonte, V. Chiono, C. Ferretti, F. Baino, C. Tonda-Turo, C. Vitale-Brovarone, I. Pashkuleva, R.L. Reis, G. Ciardelli, J. Biomed. Mater. Res. A 100, 2654 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the European Commission funding under the 7th Framework Programme (Marie Curie Initial Training Networks; Grant Number: 289958, Bioceramics for bone repair). The authors thank Dr. Patcharakamon Nooeaid, Ms Yaping Ding, Mr Wei Li and Dr Menti Goudouri (Institute of Biomaterials, University of Erlangen-Nuremberg) for experimental support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, P., Roether, J.A., Schubert, D.W. et al. Bi-layered porous constructs of PCL-coated 45S5 bioactive glass and electrospun collagen-PCL fibers. J Porous Mater 22, 1215–1226 (2015). https://doi.org/10.1007/s10934-015-9998-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9998-5

Keywords

Navigation