Skip to main content

Advertisement

Log in

Thermal, mechanical and self-destruction properties of aluminum reinforced carbon foam

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbon foam has been developed by templating method with phenolic resin and coal tar pitch as matrix precursor and polyurethane foam as a sacrificial template. For improving thermal and mechanical properties, aluminum (Al) powder with 2–8 wt% was added into the impregnation mixture. Carbonization at 1273 K in inert environment under the cover of coke breeze produced Al4C3 in situ and AlN by substitution reaction. Various thermal and mechanical tests showed a density of 0.50–0.58 g/cm3, open porosity of 64–68 %, thermal conductivity of 0.043–0.385 W/mK and a compressive strength of 17–32 MPa for the samples containing 0–6 wt% Al. Scanning electron microscope was used to evaluate the pore morphology, distribution of Al in the porous network and an approximate pore size distribution which came out to be in the range of 2–200 μm. X-ray mapping showed a homogeneous dispersion of Al with some agglomerates into the ball shape. Carbon foam with 8 wt% Al showed self-destruction in 14 days after 15 days of manufacturing. The destruction started from core and proceeded towards outer surface resulting in a core–shell effect. X-ray diffraction analysis confirmed the destruction due to the formation of Al4C3 and reaction with atmospheric moisture forming Al(OH)3. This property can be further explored to be applied in the field of composite tooling for advanced carbon fiber reinforced composites. The tool will lose strength after certain time, facilitating in easy removal from the complex shape composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Suzuki, H. Umehara, Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition. Carbon 37, 47–59 (1999)

    Article  CAS  Google Scholar 

  2. J.F. Silvain, C. Vincent, J.M. Heintz, N. Chandra, Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications. Compos. Sci. Technol. 69, 2474–2484 (2009)

    Article  CAS  Google Scholar 

  3. Y. Chen, B. Chen, X. Shi, H. Xu, Y. Hu, Y. Yuan, Preparation of pitch-based carbon foam using polyurethane foam template. Carbon 45, 2132–2134 (2007)

    Article  CAS  Google Scholar 

  4. N.C. Gallego, J.W. Klett, Carbon foams for thermal management. Carbon 41, 1461–1466 (2003)

    Article  CAS  Google Scholar 

  5. R. Mehta, D.P. Anderson, J.W. Hager, Graphitic open-celled carbon foams: processing and characterization. Carbon 41, 2174–2176 (2003)

    Article  CAS  Google Scholar 

  6. J. Googin, J. Napier, M. Scrivner, Method for manufacturing foam carbon products, US Patent 3,345,440 (1967)

  7. F.C. Cowlard, J.C. Lewis, Vitreous carbon: as new form of carbon. J. Mater. Sci. 2, 507–512 (1967)

    Article  CAS  Google Scholar 

  8. R. D. Klett, High temperature insulating carbonaceous material, US Patent 3,914,392 (1975)

  9. R.W. Pekala, R.W. Hopper, Low-density microcellular carbon foams. J. Mater. Sci. 22, 1840–1844 (1987)

    Article  CAS  Google Scholar 

  10. J. Lee, K. Sohn, T. Hyeon, Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J. Am. Chem. Soc. 123, 5146–5147 (2001)

    Article  CAS  Google Scholar 

  11. J. Klett, High thermal conductivity mesophase pitched-derived carbon foam, in Proceedings of the 1998 43rd International SAMPE Symposium and Exhibition, Part 1 (of 2) (Anaheim, CA 31 May–4 June, 1998)

  12. C. Chen, E.B. Kennel, A.H. Stiller, P.G. Stansberry, J.W. Zondlo, Carbon foam derived from various precursors. Carbon 44, 1535–1543 (2006)

    Article  CAS  Google Scholar 

  13. X.W. Wu, Y.G. Liu, M.H. Fang, L.F. Mei, B.C. Luo, Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin. Carbon 49, 1782–1786 (2011)

    Article  CAS  Google Scholar 

  14. H.F. Xu, H.J. Zhang, Y.D. Huang, Y. Wang, Porous carbon/silica composite monoliths derived from resorcinol–formaldehyde/TEOS. J. Non-Cryst. Solids 356, 971–976 (2010)

    Article  CAS  Google Scholar 

  15. Y.R. Liu, B.P. Lin, D. Li, X.Q. Zhang, Y. Sun, H. Yang, Magnetically-separable hierarchically porous carbon monoliths with partially graphitized structures as excellent adsorbents for dyes. J. Porous Mat. 21, 933–938 (2014)

    Article  CAS  Google Scholar 

  16. S.W. Lei, Q.G. Guo, J.L. Shi, L. Liu, Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 48, 2644–2646 (2010)

    Article  CAS  Google Scholar 

  17. Y.H. Yan, X.M. Shi, J.G. Liu, T. Zhao, Y.Z. Yu, Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding. J. Appl. Polym. Sci. 83, 1651–1657 (2002)

    Article  CAS  Google Scholar 

  18. M. Calvo, R. García, A. Arenillas, I. Suárez, S.R. Moinelo, Carbon foams from coals: a preliminary study. Fuel 84, 2184–2189 (2005)

    Article  CAS  Google Scholar 

  19. S. Farhan, R.M. Wang, H. Jiang, N. Ul-Haq, Preparation and characterization of carbon foam derived from pitch and phenolic resin using a soft templating method. J. Anal. Appl. Pyrolysis 110, 229–234 (2014)

    Article  CAS  Google Scholar 

  20. A.M. Druma, M.K. Alam, C. Druma, Analysis of thermal conduction in carbon foams. Int. J. Therm. Sci. 43, 689–695 (2004)

    Article  CAS  Google Scholar 

  21. S.R. White, Y.K. Kim, Process-induced residual stress analysis of AS4/3501-6 composite material. Mech. Compos. Mater. Struct. 5, 153–186 (1998)

    Article  CAS  Google Scholar 

  22. F.C. Campbell, Manufacturing processes for advanced composites (Elsevier Advanced Technology, Amsterdam, 2004)

    Google Scholar 

  23. A.M. Druma, M.K. Alam, M.S. Anghelescu, C. Druma, Three dimensional modeling of carbon foams, in ASME international mechanical engineering congress and exposition 2005 (Orlando, FL, 5–11 November, 2005)

  24. A. Gardziella, L.A. Pilato, A. Knop, Phenolic resins: chemistry, application, standardization, safety and ecology, 2nd edn. (Springer, Berlin, 2000)

    Book  Google Scholar 

  25. P. Byung-Dae, R. Bernard, Y.S. Kim, W.T. So, Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resol resin. J. Appl. Polym. Sci. 83, 1415–1424 (2002)

    Article  Google Scholar 

  26. J. Wang, H. Jiang, N. Jiang, Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochim. Acta 496, 136–142 (2009)

    Article  CAS  Google Scholar 

  27. L.B. Manfredi, O. De La Osa, N. Galego Fernández, A. Vázquez, Structure-properties relationship for resols with different formaldehyde/phenol molar ratio. Polymer 40, 3867–3875 (1999)

    Article  CAS  Google Scholar 

  28. J.T. Blucher, J. Dobranszky, U. Narusawa, Aluminium double composite structures reinforced with composite wires. Mater. Sci. Eng., A 387–389, 867–872 (2004)

    Article  Google Scholar 

  29. E. Pippel, J. Woltersdorf, M. Doktor, J. Blucher, H.P. Degischer, Interlayer structure of carbon fibre reinforced aluminium wires. J. Mater. Sci. 35, 2279–2289 (2000)

    Article  CAS  Google Scholar 

  30. R.Y. Lin, Interface evolution in aluminum matrix composites during fabrication. Key Eng. Mater. 104–107, 507–522 (1995)

    Article  Google Scholar 

  31. M.H. Vidal-Sétif, M. Lancin, C. Marhic, R. Valle, J.L. Raviart, J.C. Daux, M. Rabinovitch, On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites. Mater. Sci. Eng., A 272, 321–333 (1999)

    Article  Google Scholar 

  32. C. Qiu, R. Metselaar, Solubility of carbon in liquid Al and stability of Al4C3. J. Alloys Compd. 216, 55–60 (1994)

    Article  CAS  Google Scholar 

  33. S.H. Li, C.G. Chao, Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall. Mater. Trans. A 35, 2153–2160 (2004)

    Article  Google Scholar 

  34. H. Kwon, H. Kurita, M. Leparoux, A. Kawasaki, Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion. J. Nanosci. Nanotechnol. 11, 4119–4126 (2011)

    Article  CAS  Google Scholar 

  35. T.Y. Kosolapova, Carbides properties production and applications, 1st edn. (Plenum Press, New York, 1971)

    Google Scholar 

  36. J.K. Park, J.P. Lucas, Moisture effect on SiCP/6061 Al MMC: dissolution of interfacial Al4C3. Scr. Mater. 37, 511–516 (1997)

    Article  CAS  Google Scholar 

  37. S. Meille, M. Lombardi, J. Chevalier, L. Montanaro, Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J. Europ. Ceram. Soc. 32, 3959–3967 (2012)

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shameel Farhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, S., Wang, RM. Thermal, mechanical and self-destruction properties of aluminum reinforced carbon foam. J Porous Mater 22, 897–906 (2015). https://doi.org/10.1007/s10934-015-9963-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9963-3

Keywords

Navigation