Skip to main content

Advertisement

Log in

Electrochemical capacitance of porous reduced graphene oxide/nickel foam

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous reduced graphene oxide (rGO) supported on nickel foam (NF) had been prepared for electrochemical supercapacitor application. The GO/NF was synthesized by depositing graphene oxide on NF through ultrasonic-assisted coating process. The rGO/NF was formed through chemical reduction treatment of GO/NF using hydrazine hydrate. The hydrothermal reduced graphene oxide/nickel foam (HrGO/NF) was formed through hydrothermal reduction treatment of rGO/NF using hydrazine hydrate. The morphology and microstructure of HrGO/NF were characterized by scanning electron microscopy, transmission electron microscope and Raman spectroscopy. The electrochemical capacitance performance was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. The specific capacitance was increased from 112.5 F g−1 for rGO/NF up to 334 F g−1 for HrGO/NF at a current density of 0.3 A g−1 when only the mass of rGO was considered. The hydrothermal reduction treatment of rGO could well promote its electrical conductivity, which accordingly contributed to its improved capacitance performance of HrGO. The capacitance retention kept 99.6 % after 1,000 charge/discharge cycles even at a high current density of 4.0 A g−1, presenting a good cycling stability. The aqueous supercapacitor was also constructed using two symmetric electrodes of HrGO/NF and KOH electrolyte, exhibiting the energy density of 4.2 Wh kg−1 and the power density of 1.0 kW kg−1 at a current density of 2.0 A g−1. These results indicated the potential application of HrGO/NF as supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Chen, S. Song, D. Xue, RSC Adv. 4, 23338–23343 (2014)

    Article  CAS  Google Scholar 

  2. K. Chen, D. Xue, Colloid Interface Sci. Commun. 1, 39–42 (2014)

    Article  Google Scholar 

  3. Y. Xie, F. Song, H. Du, C. Xia, New J. Chem. 39, 604–613 (2015)

    Article  CAS  Google Scholar 

  4. K. Chen, D. Xue, J. Colloid Interface Sci. 416, 172–176 (2014)

    Article  CAS  Google Scholar 

  5. K. Chen, D. Xue, CrystEngComm 16, 4610–4618 (2014)

    Article  CAS  Google Scholar 

  6. K. Chen, S. Song, K. Li, D. Xue, CrystEngComm 15, 10367–10373 (2013)

    Article  CAS  Google Scholar 

  7. F. Liu, S. Song, D. Xue, H. Zhang, Adv. Mater. 24, 1089–1094 (2012)

    Article  CAS  Google Scholar 

  8. Y. Xie, H. Du, C. Xia, Microporous Mesoporous Mater. 204, 163–172 (2015)

    Article  CAS  Google Scholar 

  9. E. Frackowiak, F. Beguin, Carbon 39, 937–950 (2001)

    Article  CAS  Google Scholar 

  10. X. Wu, X. Hong, Z. Luo, K.S. Hui, H. Chen, J. Wu, K.N. Hui, L. Li, J. Nan, Q. Zhang, Electrochim. Acta 89, 400–406 (2013)

    Article  CAS  Google Scholar 

  11. B. Andres, S. Forsberg, A.P. Vilches, R. Zhang, H. Andersson, M. Hummelgård, J. Bäckström, H. Olin, Nord. Pulp Pap. Res. J. 27, 481–485 (2012)

    Article  CAS  Google Scholar 

  12. K. Chen, D. Xue, J. Colloid Interface Sci. 436, 41–46 (2014)

    Article  CAS  Google Scholar 

  13. X.H. Xia, J.P. Tu, Y.J. Mai, R. Chen, X.L. Wang, C.D. Gu, X.B. Zhao, Chem. Eur. J. 17, 10898–10905 (2011)

    Article  CAS  Google Scholar 

  14. C.Y. Chen, C.Y. Fan, M.T. Lee, J.K. Chang, J. Mater. Chem. 22, 7697–7700 (2012)

    Article  CAS  Google Scholar 

  15. Y. Xie, L. Zhou, C. Huang, H. Huang, J. Lu, Electrochim. Acta 53, 3643–3649 (2008)

    Article  CAS  Google Scholar 

  16. C. Xia, Y. Xie, Y. Wang, W. Wang, H. Du, F. Tian, J. Appl. Electrochem. 43, 1225–1233 (2013)

    Article  CAS  Google Scholar 

  17. Y. Xie, H. Du, J. Solid State Electrochem. 16, 2683–2689 (2012)

    Article  CAS  Google Scholar 

  18. Y. Xie, X. Fang, Electrochim. Acta 120, 273–283 (2014)

    Article  CAS  Google Scholar 

  19. H. Du, Y. Xie, C. Xia, W. Wang, F. Tian, New J. Chem. 38, 1284–1293 (2014)

    Article  CAS  Google Scholar 

  20. W. Wang, Y. Xie, C. Xia, H. Du, F. Tian, Microchim. Acta 181, 1325–1331 (2014)

    Article  CAS  Google Scholar 

  21. W. Wang, Y. Xie, Y. Wang, H. Du, C. Xia, F. Tian, Microchim. Acta 181, 381–387 (2014)

    Article  CAS  Google Scholar 

  22. H. Du, Y. Xie, C. Xia, W. Wang, F. Tian, Y. Zhou, Mater. Lett. 132, 417–420 (2014)

    Article  CAS  Google Scholar 

  23. Y. Xie, Y. Zhao, Mater. Sci. Eng. C 33, 5028–5035 (2013)

    Article  CAS  Google Scholar 

  24. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  25. F. Tian, Y. Xie, H. Du, Y. Zhou, C. Xia, W. Wang, RSC Adv. 4, 41856–41863 (2014)

    Article  CAS  Google Scholar 

  26. Y. Xie, Y. Wang, H. Du, Mater. Sci. Eng. B 178, 1443–1451 (2013)

    Article  CAS  Google Scholar 

  27. Y. Xie, D. Wang, Y. Zhou, H. Du, C. Xia, Synth. Met. 198, 59–66 (2014)

    Article  CAS  Google Scholar 

  28. C. Xia, Y. Xie, W. Wang, H. Du, Synth. Met. 192, 93–100 (2014)

    Article  CAS  Google Scholar 

  29. Y. Xie, Y. Meng, RSC Adv. 4, 41734–41743 (2014)

    Article  CAS  Google Scholar 

  30. Y. Xie, Y. Jin, Y. Zhou, Y. Wang, Appl. Surf. Sci. 133, 549–557 (2014)

    Article  Google Scholar 

  31. X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6, 3206–3213 (2012)

    Article  CAS  Google Scholar 

  32. X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163–3168 (2011)

    Article  CAS  Google Scholar 

  33. W. Wang, S.R. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Nano Energy 2, 294–303 (2013)

    Article  CAS  Google Scholar 

  34. S.B. Ye, J.C. Feng, P.Y. Wu, Acs Appl. Mater. Interface 5, 7122–7129 (2013)

    Article  CAS  Google Scholar 

  35. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, J. Mater. Sci. 48, 6707–6712 (2013)

    Article  CAS  Google Scholar 

  36. X.C. Dong, Y.F. Cao, J. Wang, M.B. Chan-Park, L.H. Wang, W. Huang, P. Chen, RSC Adv. 2, 4364–4369 (2012)

    Article  CAS  Google Scholar 

  37. Y. Zhou, Q.L. Bao, L.A.L. Tang, Y.L. Zhong, K.P. Loh, Chem. Mater. 21, 2950–2956 (2009)

    Article  CAS  Google Scholar 

  38. Y.C. Bai, R.B. Rakhi, W. Chen, H.N. Alshareef, J. Power Sources 233, 313–319 (2013)

    Article  CAS  Google Scholar 

  39. Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Liu, Y. Huang, X.F. Duan, ACS Nano 7, 4042–4049 (2013)

    Article  CAS  Google Scholar 

  40. J.N. Ding, Y.B. Liu, N.Y. Yuan, G.Q. Ding, Y. Fan, C.T. Yu, Diam. Relat. Mater. 21, 11–15 (2012)

    Article  CAS  Google Scholar 

  41. L. Zhang, G.Q. Shi, J. Phys. Chem. C 115, 17206–17212 (2011)

    Article  CAS  Google Scholar 

  42. K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Chem. Mater. 22, 1392–1401 (2010)

    Article  CAS  Google Scholar 

  43. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L.M. Dai, J.B. Baek, ACS Nano 6, 1715–1723 (2012)

    Article  CAS  Google Scholar 

  44. S. Giri, D. Ghosh, C.K. Das, J. Electroanal. Chem. 697, 32–45 (2013)

    Article  CAS  Google Scholar 

  45. I. Jung, D.A. Dikin, R.D. Piner, R.S. Ruoff, Nano Lett. 8, 4283–4287 (2008)

    Article  CAS  Google Scholar 

  46. F. Liu, D. Xue, Chem. Eur. J. 19, 10716–10722 (2013)

    Article  CAS  Google Scholar 

  47. K. Chen, F. Liu, S. Song, D. Xue, CrystEngComm 16, 7771–7776 (2014)

    Article  CAS  Google Scholar 

  48. S. Villar-Rodil, J.I. Paredes, A. Martinez-Alonso, J.M.D. Tascon, J. Mater. Chem. 19, 3591–3593 (2009)

    Article  CAS  Google Scholar 

  49. L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Nano Lett. 12, 1806–1812 (2012)

    Article  CAS  Google Scholar 

  50. Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Muellen, J. Am. Chem. Soc. 134, 19532–19535 (2012)

    Article  CAS  Google Scholar 

  51. H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, Acs Appl. Mater. Interface 4, 2801–2810 (2012)

    Article  CAS  Google Scholar 

  52. X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, ACS Nano 5, 8739–8749 (2011)

    Article  CAS  Google Scholar 

  53. M.E.G. Lyons, M.P. Brandon, J. Electroanal. Chem. 641, 119–130 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Nos. 21373047 and 20871029), Program for New Century Excellent Talents in University of the State Ministry of Education (No. NCET-08-0119), Science & Technology Program of Suzhou City, China (Nos. ZXG2012026, SYN201208 and SYG201017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhan, Y. Electrochemical capacitance of porous reduced graphene oxide/nickel foam. J Porous Mater 22, 403–412 (2015). https://doi.org/10.1007/s10934-015-9909-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9909-9

Keywords

Navigation