Skip to main content
Log in

Synthesis and characterization of nanosilver catalysts supported on the nitrogen-incorporated-SBA-15 for the low-temperature selective CO oxidation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nitrogen-incorporated molecular sieve materials were obtained by the modification of SBA-15 with NH3 under different nitridation temperatures, and the as-prepared SBA-15-N materials were used as supports for the nanosilver catalysts by the impregnation method. Some technologies such as transmission electron microscope, elemental analysis, X-ray photoelectron spectroscopy, physical adsorption–desorption of nitrogen, carbon dioxide temperature programmed desorption and X-ray diffraction were used to characterize the structure of the supports and nanosilver catalysts. The selective CO oxidation reaction was carried out to investigate the catalytic activity and selectivity of the silver catalysts Ag/SBA-15-N under low temperature from 25 to 65 °C, and the stability of Ag/SBA-15-N-1000 catalyst was also tested under 55 °C for 15 h. The results suggested that the nitrogen content of the SBA-15-N material was increased with the increasing of nitriding temperature. When the nitriding temperature was kept at 1000 °C for 20 h, the nitrogen content of the SBA-15-N support could reach to 13.7 %, and the CO conversion and the CO2 selectivity of Ag/SBA-15-N-1000 catalyst were both better than those of Ag/SBA-15 catalyst without nitridation treatment, respectively. This might be due to the –NHx groups in the SBA-15-N skeleton, which led to the strong interaction between –NHx groups and silver particles and gave rise to a good dispersion of nanosilver particles to the channels of SBA-15-N support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Korotkikh, R. Ferrauto, Catal. Today 62, 249 (2000)

    Article  CAS  Google Scholar 

  2. A. Manasilp, E. Gulari, Appl. Catal. B 37, 17 (2002)

    Article  CAS  Google Scholar 

  3. Q. Zhang, L. Shore, R.J. Farrauto, Int. J. Hydrog. Energy 37, 10874 (2012)

    Article  CAS  Google Scholar 

  4. G. Neri, I. Arrigo, F. Corigliano, C. Espro, S. Galvagno, V. Modafferi, A. Donato, J. Porous Mater. 21, 623 (2014)

    Article  CAS  Google Scholar 

  5. X. Chen, J.J. Delgado, J.G. Gatica, S. Zerrad, J.M. Cies, S. Bernal, J. Catal. 299, 272 (2013)

    Article  CAS  Google Scholar 

  6. Y.H. Kim, E.D. Park, Appl. Catal. B 96, 41 (2010)

    Article  CAS  Google Scholar 

  7. C. Wang, L. Zhang, Y. Liu, Appl. Catal. B 136–137, 48 (2013)

    Article  Google Scholar 

  8. E.D. Park, D. Lee, H.C. Lee, Catal. Today 139, 280 (2009)

    Article  CAS  Google Scholar 

  9. M. Schmal, C.A.C. Perez, R.N.S.H. Magalhaes, Top. Catal. 57, 1103 (2014)

    Article  CAS  Google Scholar 

  10. S.H. Oh, R.M. Sinkevitch, J. Catal. 142, 254 (1993)

    Article  CAS  Google Scholar 

  11. M. Haruta, Catal. Today 36, 153 (1997)

    Article  CAS  Google Scholar 

  12. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J. Catal. 144, 175 (1993)

    Article  CAS  Google Scholar 

  13. Y. Teng, H. Sakurai, A. Ueda, T. Kobaysahi, Int. J. Hydrog. Energy 24, 355 (1999)

    Article  CAS  Google Scholar 

  14. Z. Zhao, M.M. Yung, E. Ozkan, U.S. Ozkan, Catal. Commun. 9, 1465 (2008)

    Article  CAS  Google Scholar 

  15. G.W.S. Epling, P.K. Cheekatamarla, A.M. Lane, Chem. Eng. J. 93, 61 (2003)

    Article  CAS  Google Scholar 

  16. M. Kumar, S. Deka, Appl. Mater. Interfaces 18, 16071 (2014)

    Article  Google Scholar 

  17. G. Nagy, T. Benko´, L. Boro´k, T. Csay, A. Horva´th, K. Frey, A. Beck, Reac. Kinet. Mech. Cat. 115, 45 (2015)

    Article  CAS  Google Scholar 

  18. G. Schmid, M. Ba¨umle, M. Geerkens, I. Heim, C. Osemann, T. Sawitowski, Chem. Soc. Rev. 28, 179 (1999)

    Article  CAS  Google Scholar 

  19. T. Sawitowski, Y. Miquel, A. Heilmann, G. Schmid, Adv. Funct. Mater. 11, 435 (2001)

    Article  CAS  Google Scholar 

  20. J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  21. D. Zhao, Q. Huo, J. Feng, B.F. Chmlka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998)

    Article  CAS  Google Scholar 

  22. X. Zhang, H. Dong, Z. Gu, G. Wang, Y. Zuo, Y. Wang, L. Cui, Chem. Eng. J. 269, 94 (2015)

    Article  CAS  Google Scholar 

  23. L. Li, J.L. Shi, L.X. Zhang, L.M. Xiong, J.N. Yan, Adv. Mater. 16, 1079 (2004)

    Article  CAS  Google Scholar 

  24. H.J. Shin, R. Ryoo, Z. Liu, O. Terasaki, J. Am. Chem. Soc. 123, 1246 (2001)

    Article  CAS  Google Scholar 

  25. X.G. Zhao, J.L. Shi, B. Hu, L.X. Zhang, Z.L. Hua, Mater. Lett. 58, 2152 (2004)

    Article  CAS  Google Scholar 

  26. C. Chen, M. Chen, T. Serizawa, M. Akashi, Adv. Mater. 10, 1122 (1998)

    Article  CAS  Google Scholar 

  27. Y. Zhao, Y. Qi, Y. Wei, Y. Zhang, S. Zhang, Y. Yang, Z. Liu, Micropor. Mesopor. Mater. 111, 300 (2008)

    Article  CAS  Google Scholar 

  28. J. Wang, Q. Liu, Micropor. Mesopor. Mater. 83, 225 (2005)

    Article  CAS  Google Scholar 

  29. E.-Y. Ko, E.D. Park, K.W. Seo, H.C. Lee, D. Lee, S. Kim, Catal. Today 116, 377 (2006)

    Article  CAS  Google Scholar 

  30. J. Wang, Q. Liu, J. Mater. Res. 20, 2296 (2005)

    Article  CAS  Google Scholar 

  31. Y. Xia, R. Mokaya, Angew. Chem. Int. Ed. 42, 2639 (2003)

    Article  CAS  Google Scholar 

  32. K. Wan, Q. Liu, C. Zhang, Chem. Lett. 32, 362 (2003)

    Article  CAS  Google Scholar 

  33. K.B. Lee, S.M. Lee, J. Cheon, Adv. Mater. 13, 517 (2001)

    Article  CAS  Google Scholar 

  34. P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, A.A. Athawale, A.J. Chandwadkar, Mater. Lett. 58, 1168 (2004)

    Article  CAS  Google Scholar 

  35. M.H. Huang, A. Choudrey, P. Yang, Chem. Commun. 12, 1063 (2000)

    Article  Google Scholar 

  36. J.J. Benitez, A. Diaz, Y. Laurent, J.A. Odriozola, Appl. Catal. A-Gen. 176, 177 (1999)

    Article  CAS  Google Scholar 

  37. K. Zhu, W. Hua, W. Deng, R.M. Richards, Eur. J. Inorg. Chem. 2012, 2869 (2012)

    Article  CAS  Google Scholar 

  38. R.N.S.H. Magalhaes, F.S. Toniolo, V.T. da Silva, M. Schmal, Appl. Catal. A Gen. 388, 216 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports of this work by the National Natural Science Foundation of China (21403304) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Li or Jinlin Li.

Ethics declarations

Conflict of interest

The experiments of this paper comply with the current laws of China. The authors of this paper declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Supplementary material 2 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yang, Z., Yuan, Y. et al. Synthesis and characterization of nanosilver catalysts supported on the nitrogen-incorporated-SBA-15 for the low-temperature selective CO oxidation. J Porous Mater 22, 1473–1482 (2015). https://doi.org/10.1007/s10934-015-0028-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0028-4

Keywords

Navigation