Skip to main content

Advertisement

Log in

Sorption and electrochemical properties of carbon–silica composites and carbons from 2,3-dihydroxynaphthalene

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbon–silica composites were obtained by uniformly coating the entire pore surface of SBA-15 and KIT-6 with a thin carbon layer using a 2,3-dihydroxynaphthalene as a carbon source. Due to formation of uniform carbon coating obtained composites possesses electrical conductivity despite the insulative nature of the silicas and thus exhibit ohmic curves. The specific capacitance per surface area of carbon–silica composites is higher than those of conventional activated carbons due to carbon–silica composites exhibited capacitance from electric double-layer and a time-consuming process between carbon surface and H2SO4 electrolyte similar to pseudocapacitance. This allows considering such composites as electrode materials with uniform pores. The Hydrogen initial potential for adsorption |Δµ 0| and density of pore surface filling with hydrogen for the composite with higher carbon content (24.7 µg/m2) is more than 5 times higher than for the initial silica (4.6 µg/m2) and approximately 2 times higher than for the composite with lower carbon content (10.4 µg/m2). |Δµ 0| for the obtained porous carbons is higher (5.2 kJ/mol) than for the initial matrices (2.8 kJ/mol) and carbon–silica composites (3.7–5.1 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.E. Davis, Nature 417, 813 (2002)

    Article  CAS  Google Scholar 

  2. P. Serp, J.L. Figueiredo, Carbon materials for catalysis (John Wiley & Sons, 2009), pp. 5–23

  3. T.D. Burchell, Carbon materials for advanced technologies (Elsevier, Oxford, 1999), pp. 56–98

    Google Scholar 

  4. W. Loh, Block copolymer micelles, in Encyclopedia of surface and colloid science, ed. by A.T. Hubbard (New York, Marcel Dekker, 2002), pp. 802–813

    Google Scholar 

  5. C. Liang, S. Dai, J. Am. Chem. Soc. 128(16), 5316 (2006)

    Article  CAS  Google Scholar 

  6. R.J. Albalak, E.L. Thomas, M.S. Capel, Polymer 38(15), 3819 (1997)

    Article  CAS  Google Scholar 

  7. R.J. Albalak, M.S. Capel, E.L. Thomas, Polymer 39(8/9), 1647 (1998)

    Article  CAS  Google Scholar 

  8. B.J. Dair, C.C. Honeker, D.B. Alward, A. Avgeropoulos, N. Hadjichristidis, L.J. Fetters, M. Capel, E.L. Thomas, Macromolecules 32(24), 8145 (1999)

    Article  CAS  Google Scholar 

  9. C. Park, S. Simmons, L.J. Fetters, B. Hsiao, F. Yeh, E.L. Thomas, Polymer 41(8), 2971 (2000)

    Article  CAS  Google Scholar 

  10. M. Zhou, L. Shang, B.L. Li, L.J. Huang, S.J. Dong, Electrochem. Commun. 10(6), 859 (2008)

    Article  CAS  Google Scholar 

  11. M. Zhou, L. Deng, D. Wen, L. Shang, L.H. Jin, S.J. Dong, Biosens. Bioelectron. 24(9), 2904 (2009)

    Article  CAS  Google Scholar 

  12. H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Microp. Mesopor. Mater. 44–45, 755 (2001)

    Article  Google Scholar 

  13. X.Y. Liu, L.B. Sun, F. Lu, X.D. Liu, X.Q. Liu, Chem. Commun. 49(73), 8087 (2013)

    Article  CAS  Google Scholar 

  14. L.B. Sun, J. Shen, F. Lu, X.D. Liu, L. Zhu, X.Q. Liu, Chem. Commun. 50(77), 11299 (2014)

    Article  CAS  Google Scholar 

  15. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  16. F. Kleitz, S.H. Choi, R. Ryoo, Chem. Commun. 17, 2136 (2003)

    Article  Google Scholar 

  17. H. Nishiharaa, Y. Fukura, K. Inde, K. Tsuji, M. Takeuchi, T. Kyotani, Carbon 46(1), 48 (2008)

    Article  Google Scholar 

  18. S.G. Gregg, K.S.W. Sing, Adsorption, surface area and porosity (Academic Press, New York, 1982), p. 94

    Google Scholar 

  19. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  CAS  Google Scholar 

  20. A. Saito, C. Foley, AlChE J. 37(3), 429 (1991)

    Article  CAS  Google Scholar 

  21. P. Hudec, A. Smieskova, Z. Zidek, P. Schneider, O. Solcova, Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium, pts A and B, ed. by R. Aiello, G. Giordano, F. Testa, vol. 142 (Amsterdam, Elsevier Press, 2002), p. 1587

  22. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147(7), 2507 (2000)

    Article  CAS  Google Scholar 

  23. M.J. Bleda-Martınez, J.A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Carbon 43, 2677 (2005)

    Article  Google Scholar 

  24. D. Hulicova-Jurcakova, M. Seredych, Y. Jin, G.Q. Lu, T.J. Bandosz, Carbon 48(6), 1767 (2010)

    Article  CAS  Google Scholar 

  25. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, J. Electrochem. Soc. 148(8), A910 (2001)

    Article  CAS  Google Scholar 

  26. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta 49(4), 515 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Shcherban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filonenko, S.M., Shcherban, N.D., Yaremov, P.S. et al. Sorption and electrochemical properties of carbon–silica composites and carbons from 2,3-dihydroxynaphthalene. J Porous Mater 22, 21–28 (2015). https://doi.org/10.1007/s10934-014-9865-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9865-9

Keywords

Navigation