Skip to main content
Log in

Fe2O3/TUD-1: an efficient catalysts for Friedel–Crafts alkylation of aromatics

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Three-dimensional mesoporous (Fe-TUD-1) catalysts with different Si/Fe ratios (100, 50, 20 and 10) are prepared using triethanolamine as template. Physicochemical and textural measurements by XRD, elemental analysis, N2 adsorption, UV–Vis spectroscopy and HR-TEM imaging indicate the formation of pure solid mesoporous materials and the presence of Fe2O3 nanoparticles in the prepared Fe-TUD-1 samples. The catalytic performance of Fe-TUD-1 catalysts is tested in Friedel–Crafts alkylations of single-ring aromatic compounds [e.g. toluene (T), ethyl benzene (EB) and cumene (C)] by benzyl alcohol (BnOH). Dispersion of Fe(III) in the mesoporous matrix of TUD-1 enhanced the catalytic activity of Fe-TUD-1 in the alkylation of aromatic compounds compared to pure Fe2O3 and TUD-1 catalysts. The catalytic activity further increases by the decreasing of Si/Fe ratio. Sample loaded with Si/Fe ratio = 10 (Fe-10) showed almost complete conversion of BnOH in a relatively very short reaction time (<30 min) with 95 % selectivity. The catalytic performance of Fe-TUD-1 was superior to other metal-containing TUD-1 (e.g. Ga, Sn, and Ti) catalysts, or other Fe-containing catalysts (e.g. Fe-MCM-41, ZSM-5 and Fe-HMS). Alkylation of C is the fastest among the three aromatic substrates investigated (at temperatures very close to their boiling points) due to the largest inductive effect by the isopropyl group compared to the methyl group of T and the ethyl group in EB. Dibenzyl ether is formed as a byproduct only in the early times of the reaction and proved to act as alkylating agent after being hydrolyzed backwards to reform BnOH. Leaching experiments show the Fe-TUD-1 materials are very stable and can be reused as alkylation catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.-I. Shimizu, K. Niimi, A. Satsuma, Appl. Catal. Gen. 349, 1–5 (2008)

    Article  CAS  Google Scholar 

  2. T. Okuhara, Chem. Rev. 102, 3641–3666 (2002)

    Article  CAS  Google Scholar 

  3. J.H. Clark, D.J. Macquarrie, Handbook of Green Chemistry and Technology (Blackwell, Oxford, 2002)

    Book  Google Scholar 

  4. M.A. Harmer, W.E. Farneth, Q. Sun, Adv. Mater. 10, 1255–1257 (1998)

    Article  CAS  Google Scholar 

  5. K. Wilson, J.H. Clark, Pure Appl. Chem. 72, 1313–1319 (2000)

    Article  CAS  Google Scholar 

  6. B. Coq, V. Gourves, F. Figuéras, Appl. Catal. Gen. 100, 69–75 (1993)

    Article  CAS  Google Scholar 

  7. A.P. Singh, D. Bhattacharya, Catal. Lett. 32, 327–333 (1995)

    Article  CAS  Google Scholar 

  8. T. Cseri, S. Békássy, F. Figueras, S. Rizner, J. Mol. Catal. Chem. 98, 101–107 (1995)

    Article  CAS  Google Scholar 

  9. M. Campanati, F. Fazzini, G. Fornasari, A. Tagliani, A. Vaccari, O. Piccolo, Chem. Ind. 75, 307–318 (1998)

    CAS  Google Scholar 

  10. Y. Izumi, M. Ogawa, K. Urabe, Appl. Catal. Gen. 132, 127–140 (1995)

    Article  CAS  Google Scholar 

  11. Y. Izumi, M. Ogawa, W. Nohara, K. Urabe, Chem. Lett. 21, 1987–1990 (1992)

    Article  Google Scholar 

  12. E.G. Rightor, M.S. Tzou, T.J. Pinnavaia, J. Catal. 130, 29–40 (1991)

    Article  CAS  Google Scholar 

  13. G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal. 157, 227–234 (1995)

    Article  CAS  Google Scholar 

  14. A. Corma, Chem. Rev. 95, 559–614 (1995)

    Article  CAS  Google Scholar 

  15. A. Corma, V. Martínez-Soria, E. Schnoeveld, J. Catal. 192, 163–173 (2000)

    Article  CAS  Google Scholar 

  16. S. Jun, R. Ryoo, J. Catal. 195, 237–243 (2000)

    Article  CAS  Google Scholar 

  17. C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo, G. Bellussi, Microporous Mesoporous Mater. 27, 345–354 (1999)

    Article  CAS  Google Scholar 

  18. Z.Y. Yuan, S.Q. Liu, T.H. Chen, J.Z. Wang, H.X. Li, J. Chem. Soc. Chem. Commun. (9), 973–974 (1995). doi:10.1039/C39950000973

  19. B. Echchahed, A.R. Badiei, F. Béland, L. Bonneviot, Stud. Surf. Sci. Catal. 117, 559–566 (1998)

  20. B. Echchahed, A. Moen, D. Nicholson, L. Bonneviot, Chem. Mater. 9, 1716–1719 (1997)

    Article  CAS  Google Scholar 

  21. W. Zhao, Y. Luo, P. Deng, Q. Li, Catal. Lett. 73, 199–202 (2001)

    Article  CAS  Google Scholar 

  22. N.Y. He, J.M. Cao, S.L. Bao, Q.H. Xu, Mater. Lett. 31, 133–136 (1997)

    Article  CAS  Google Scholar 

  23. M. Iwamoto, T. Abe, Y. Tachibana, J. Mol. Catal. Chem. 155, 143–153 (2000)

    Article  CAS  Google Scholar 

  24. R. Köhn, M. Fröba, Catal. Today 68, 227–236 (2001)

    Article  Google Scholar 

  25. P. Selvam, S.E. Dapurkar, S.K. Badamali, M. Murugasan, H. Kuwano, Catal. Today 68, 69–74 (2001)

    Article  CAS  Google Scholar 

  26. A. Arafat, Y. Alhamed, J. Porous Mater. 16, 565–572 (2009)

    Article  CAS  Google Scholar 

  27. M.S. Hamdy, G. Mul, J.C. Jansen, A. Ebaid, Z. Shan, A.R. Overweg, T. Maschmeyer, Catal. Today 100, 255–260 (2005)

    Article  CAS  Google Scholar 

  28. R.A. Sheldon, I.W.C.E. Arends, H.E.B. Lempers, Catal. Today 41, 387–407 (1998)

    Article  CAS  Google Scholar 

  29. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  30. Y. Wang, Q. Zhang, T. Shishido, K. Takehira, J. Catal. 209, 186–196 (2002)

    Article  CAS  Google Scholar 

  31. G.M. Loudon, Organic Chemistry (Benjaminl/Cummings, Menlo Park, 1988)

    Google Scholar 

  32. G.A. Olah, Friedel–Crafts Chemistry (Wiley, New York, 1973)

    Google Scholar 

  33. R. Weast, M. Astle, W. Beyer, Hand Book of Chemistry and Physics, 64th edn. (CRC Press, Boca Raton, FL, 1985)

  34. V.R. Choudhary, S.K. Jana, Appl. Catal. Gen. 224, 51–62 (2002)

    Article  CAS  Google Scholar 

  35. Z. Shan, J.C. Jansen, L. Marchese, T. Maschmeyer, Microporous Mesoporous Mater. 48, 181–187 (2001)

    Article  CAS  Google Scholar 

  36. J.J. Chiu, D.J. Pine, S.T. Bishop, B.F. Chmelka, J. Catal. 221, 400–412 (2004)

    Article  CAS  Google Scholar 

  37. V.D. Chaube, Catal. Commun. 5, 321–326 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (4/011/430). The authors, therefore, acknowledge with thanks DSR technical and financial support. Characterization equipment operators, Eng. Raouf Rafiqy, Dr. Hfedh Driss and Dr. Mahmoud Salem from the biochemical department (HR-TEM) are acknowledged for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham S. Bamufleh.

Additional information

Ahmed Arafat: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafat, A., Bamufleh, H.S. Fe2O3/TUD-1: an efficient catalysts for Friedel–Crafts alkylation of aromatics. J Porous Mater 21, 1091–1100 (2014). https://doi.org/10.1007/s10934-014-9859-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9859-7

Keywords

Navigation