Skip to main content
Log in

Density and porosity of bentonites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The calculation and measurement of the densities of smectites proved that calculation can lead to accurate values if the smectite d001-value, water content, molar mass of one formula unit, interlayer composition, and layer charge density are considered. The density measurement was supposed to be affected by accommodation of some He in micropores. The specific surface area determined by the common N2 adsorption is largely affected by micropores which in turn was used as proxy for microporosity. The investigated materials show a wide range of microporosities (5–65 % of the total porosity up to 50 μm). Micropores are supposed to result from the imperfect stacking of single TOT layers resulting in the quasi crystalline overlap region but they also result from partial access of the interlayer at the edges. Unfortunately, both types of microporosity could not be distinguished quantitatively. For measurement of the microporosity both N2 and CO2 adsorption were found to be suitable. The mesoporosity of bentonites also covers a significant range. One particularly mesoporous material was identified both by N2 adsorption and mercury intrusion. SEM investigation suggests the fibrous microstructure to be responsible for the extraordinary mesoporosity. For the characterization of the mesoporosity, N2 adsorption showed best resolution. The macroporosity may be classified according to the type of aggregates observable by SEM. The typical rose like arrangement of smectites results in 1 μm macropores and relict structures of the volcanic glass particles result in larger pores. The third type of macropore simply results from the relative arrangement of aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Pusch, Use of bentonite for isolation of radioactive waste products. Clay Miner. 27, 353–361 (1992)

    Article  CAS  Google Scholar 

  2. J.K. Mitchell, Fundamentals of Soil Behavior, 2nd ed (Wiley, New York, 1993), pp. 131–160

  3. K. Collins, A. McGown, The form and function of microfabric features in a variety of natural soils. Géotechnique 24, 223–254 (1974)

    Article  Google Scholar 

  4. D.J. Vaughan, R.A.D. Pattrick, Mineral Surfaces. The Mineralogical Society Series 5 (Chapman and Hall, New York, 1995), ISBN10 0412563401, 384 p

  5. Q. Touret, C.H. Pons, D. Tessier, Y. Tardy, Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau. Clay Miner 25, 217–233 (1990)

    Article  CAS  Google Scholar 

  6. IUPAC, J. Rouquérol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the Characterisation of Porous Solids (Recommendations 1994). Pure Appl. Chem., 66, 1739–1758 (1994)

  7. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic press, London, 1982). 94 pp

    Google Scholar 

  8. C. Hoffmann, E.E. Alonso, E. Romero, Hydro-mechanical behaviour of bentonite pellet mixtures. Phys. Chem. Earth 32, 832–849 (2007)

    Article  Google Scholar 

  9. L.J. Michot, F. Villieras, Surface area and porosity, in Handbook of Clay Science, eds. by F. Bergaya, B.K.G. Theng, G. Lagaly. (Elsevier, Amsterdam, 2006), pp. 965–978

  10. D.W. Rutherford, C.T. Chiou, D.D. Eberl, Effects of exchanged cation on the microporosity of montmorillonite. Clays Clay Miner. 45, 534–543 (1997)

    Article  CAS  Google Scholar 

  11. S. Kaufhold, R. Dohrmann, M. Klinkenberg, S. Siegesmund, K. Ufer, The BET surface area of bentonites. J. Colloid Interface Sci. 349, 275–282 (2010)

    Article  CAS  Google Scholar 

  12. R. Prikryl, Z. Weishauptova, Hierarchial porosity of bentonite-based buffer and its modification due to increased temperature and hydration. Appl. Clay Sci. 47, 163–170 (2010)

    Article  CAS  Google Scholar 

  13. C. Hoffmann, E.E. Alonso, E. Romero, Phys. Chem. Earth Parts A/B/C 32(8–14), 832–849 (2007)

    Article  Google Scholar 

  14. D.M. Anderson, R.C. Reynolds, Umiat bentonite: an unusual montmorillonite from umiat, Alaska. Am. Mineral. 51, 1443–1456 (1966)

    CAS  Google Scholar 

  15. H.G. Montes, Y. Geraud, J. Duplay, T. Reuschle, ESEM observations of compacted bentonite submitted to hydration/dehydration conditions. Coll. Surf. A Physicochem. Eng. Aspects 262, 14–22 (2005)

    Google Scholar 

  16. P. Delage, D. Marcial, Y.I. Cui, X. Ruiz, Ageing effects in a compacted bentonite: a microstructure approach. Géotechnique 56(5), 291–304 (2006)

    Google Scholar 

  17. A. Lloret, M.V. Villar, Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted ‘‘FEBEX’’ bentonite. Phys. Chem. Earth 32, 701–715 (2007)

    Article  Google Scholar 

  18. C.P. DeWit, P.L. Arends, in R.E. Grim (1968): Clay Mineralogy (McGraw-Hill, Inc, New York, 1950)

  19. J.L. Post, Moisture content and density of smectites. Geotech. Test. J. 12(3), 217–221 (1989)

    Article  Google Scholar 

  20. M. Klinkenberg, Einfluss des Mikrogefüges auf ausgewählte petrophysikalische Eigenschaften von Tongesteinen und Bentoniten. PhD thesis of the Georg-August-Universität Göttingen, 144 S. online available at: http://webdoc.sub.gwdg.de/diss/2008/klinkenberg/klinkenberg.pdf (2008)

  21. S. Kaufhold, R. Dohrmann, Detachment of colloidal particles from bentonites in water. Appl. Clay Sci. 39, 50–59 (2008)

    Article  CAS  Google Scholar 

  22. S. Kaufhold, R. Dohrmann, D. Koch, G. Houben, The pH of aqueous bentonite suspensions. Clays Clay Miner. 56, 338–343 (2008)

    Article  CAS  Google Scholar 

  23. K. Ufer, H. Stanjek, G. Roth, R. Dohrmann, R. Kleeberg, S. Kaufhold, Quantitative phase analysis of bentonites by the Rietveld method. Clays Clay Miner. 56, 272–282 (2008)

    Article  CAS  Google Scholar 

  24. L.P. Meier, G. Kahr, Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with triethylenetetramine and tretraethylenepentamine. Clays Clay Miner. 47, 386–388 (1999)

    Article  CAS  Google Scholar 

  25. S. Kaufhold, R. Dohrmann, Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für Angewandte Geologie. ISSN 0044-2259, 2/2003, 13–18 (2003)

  26. P.A. Webb, C. Orr, Analytical methods in fine particle technology (Micromeritics Instrument Corp, Norcross, GA, 1997)

    Google Scholar 

  27. E.W. Washburn, Note on a method of determining the distribution of pore sizes in a porous material. Proc. Nat. Acad. Sci. USA 7, 115–116 (1921)

    Article  CAS  Google Scholar 

  28. S. Diamond, Pore size distributions in clays. Clays Clay Miner. 18, 7–23 (1970)

    Article  CAS  Google Scholar 

  29. E.P. Barret, L.G. Joyner, P.P. Halenda, The determination of pore volume and distributions in porous substannces. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  30. J.C. Echeverría, M.T. Morera, M.C. Mazkiarán, J.J. Garrido, Characterization of the porous structure of soils. Adsorption of nitrogen (77 K) and carbon dioxide (273 K), and mercury porosimetry. Eur. J. Soil Sci. 50, 497–503 (1999)

    Article  Google Scholar 

  31. Quantachrome, Micropore size analysis of porous carbons using CO2 adsorption at 273.15 K (0 °C). Powder Tech Note 35, Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 USA (2003)

  32. Quantachrome, Adsorptives for physisorption experiments: Selection and their physical properties. Powder Tech Note 52, Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 USA (2011)

  33. S. Kaufhold, R. Dohrmann, J.W. Stucki, A.S. Anastácio, Layer charge density of smectites—closing the gap between the structural formula method and the alkyl ammonium method. Clays Clay Miner. 59, 200–211 (2011)

    Article  CAS  Google Scholar 

  34. S. Kaufhold, R. Dohrmann, M. Klinkenberg, Water uptake capacity of bentonites. Clays Clay Miner. 58, 37–43 (2010)

    Article  CAS  Google Scholar 

  35. S. Kaufhold, R. Dohrmann, K. Ufer, R. Kleeberg, H. Stanjek, Cu trien exchange to improve the analytical understanding of smectites. Clay Miner. 46, 411–420 (2011)

    Article  CAS  Google Scholar 

  36. S. Kaufhold, R. Dohrmann, Stability of bentonites in salt solutions II. Potassium chloride solution—initial step of illitization? Appl. Clay Sci. 49, 98–107 (2010)

    Article  CAS  Google Scholar 

  37. K. Greene-Kelly, Irreversible dehydration in montmorillonite, part II. Clay Miner. Bull. 2, 52–56 (1953)

    Article  CAS  Google Scholar 

  38. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Perotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 4, 603–619 (1985)

  39. A. Decher, Bentonite der Insel Milos/Griechenland. Dissertation RWTH Aachen, ISBN 3-86073-602-7, 194 S (1997)

  40. M. Klinkenberg, S. Kaufhold, R. Dohrmann, S. Siegesmund, Abrasivity by ben-tonite dispersions. Appl. Clay Sci. 46, 37–42 (2009). doi:10.1016/j.clay.2009.07.004

    Google Scholar 

  41. P. Delage, G. Lefebvre, Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can. Geotech. J. 21, 21–35 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaufhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufhold, S., Plötze, M., Klinkenberg, M. et al. Density and porosity of bentonites. J Porous Mater 20, 191–208 (2013). https://doi.org/10.1007/s10934-012-9589-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9589-7

Keywords

Navigation