Skip to main content
Log in

Three-dimensional void space structure of activated carbon packed beds

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The three-dimensional void space structure generated by piling active carbon grains has a large impact on the filter operation, through the modification of the transport properties inside the bed. To gain insight into the relation between morphology and transport properties, the three-dimensional void space structure of activated carbon packed beds was studied by X-ray microtomography coupled with image analysis. Image analysis algorithms allowing the determination of the total void fraction, the void size distribution and the radial void fraction profiles were developed. This methodology was used to characterize the void space structure of two filters with the same length but different diameters, 15 and 28 mm. Commercial granular activated carbon with average particle size close to 1 mm was used. The comparison of the void size distributions indicated that void sizes are almost normally distributed around only one maximum for the large filter, while the distribution has a more complex shape in the small filter. The radial void fraction profiles showed an increase of the void fraction from the center of the filter to the wall accompanied with an oscillatory behaviour at the small scale. Power spectrum of radial profiles of the large filter shows a characteristic length matching well with the carbon particle size, indicating that the carbon grains are uniformly packed in the bed. In the small filter, power spectrum suggests an uneven packing of grains. For both filters, the total void fraction measured by image analysis was very close to the value determined ‘physically’ knowing the carbon mass, bulk density and filter dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Sutherland, Filters and Filtration Handbook, 5th edn. (Elsevier, Burlington, 2008)

    Google Scholar 

  2. M.B. Hochking, Handbook of Chemical Technology and Pollution Control, 3rd edn. (Elsevier, Amsterdarm, 2005)

    Google Scholar 

  3. L.K. Wang, N.C. Pereira, Y.-T. Hung (eds.), Air Pollution Control Engineering (Humana Press Inc., Totowa, 2004)

    Google Scholar 

  4. R.T. Yang, Gas Separation by Adsorption Processes (Imperial College Press, London, 1997)

    Google Scholar 

  5. W.H.B. Revoir, C.T. Respiratory Protection Handbook (CRC Press LLC, Boca Raton, 1997)

    Google Scholar 

  6. P.A. Schweitzer, Handbook of Separation Techniques for Chemical Engineers (McGraw-Hill Companies, New York, 1999)

    Google Scholar 

  7. A.J. Sederman, M.L. Johns, P. Alexander, L.F. Gladden. Magn Reson Imaging 16, 497 (1998)

    Google Scholar 

  8. M. Suzuki, T. Shinmura, K. Iimura, M. Hirota. Study of Wall Effect on Particle Packing Structure using X-ray Micro Computed Tomography, in Proceedings of 5th World Congress on Industrial Process Tomography, ed. by, Bergen, Norway, 2007, pp. 304

  9. W. Kwapinski, M. Winterberg, E. Tsotsas, D. Mewes, Chem. Eng. Technol. 27, 1179 (2004)

    Article  CAS  Google Scholar 

  10. M. Suzuki, T. Shinmura, K. Iimura, M. Hirota, Adv. Powder Technol. 19, 183 (2008)

    Article  Google Scholar 

  11. A. Leonard, H. Wullens, S. Blacher, P. Marchot, D. Toye, M. Crine, P. Lodewyckx, Sep. Pur. Technol. 64, 127 (2008)

    Article  CAS  Google Scholar 

  12. P. Lodewyckx, S. Blacher, A. Leonard, Adsorption 12, 19 (2006)

    Article  CAS  Google Scholar 

  13. K.A.M. Gasem, J. Robinson, R.L., L.R. Radovic. Sequestering carbon dioxide in Coalbeds, (Oklahoma State University, 2001)

  14. L.A. Feldkamp, L.C. Davis, J.W. Kress, J. Opt. Soc. Am. A. 1, 612 (1984)

    Article  Google Scholar 

  15. P. Soille, Morphological Image Analysis—Principles and Applications (Springer, New York, 1999)

    Google Scholar 

  16. M. Winterberg, E. Tsotsas, AICHE J. 46, 1084 (2000)

    Article  CAS  Google Scholar 

  17. B. Eisfeld, K. Schnitzlein, Chem. Eng. Sci. 56, 4321 (2001)

    Article  CAS  Google Scholar 

  18. S.M. White, C.L. Tien, Heat Mass Transfer 21, 291 (1987)

    CAS  Google Scholar 

  19. D. Vortmeyer, J. Schuster, Chem. Eng. Sci. 38, 1691 (1983)

    Article  CAS  Google Scholar 

  20. L.H.S. Roblee, R.M. Baird, J.W. Tierney, AICHE J. 4, 460 (1958)

    Article  CAS  Google Scholar 

  21. C.G. du Toit, Nucl. Eng. Design 238, 3073 (2008)

    Article  Google Scholar 

  22. A.L. Negrini, A. Fuelber, J.T. Freire, J.C. Thomeo, Braz. J. Chem. Eng. 16, 421 (1999)

    Article  CAS  Google Scholar 

  23. K. Schnitzlein, Chem. Eng. Sci. 56, 579 (2001)

    Article  CAS  Google Scholar 

  24. A.J. Sederman, P. Alexander, L.F. Galdden, Powder Technol. 117, 255 (2001)

    Article  CAS  Google Scholar 

  25. J. Theuerkauf, P. Witt, D. Schwesig, Powder Technol. 165, 92 (2006)

    Article  CAS  Google Scholar 

  26. R.F. Benenati, C.B. Brosilow, AICHE J. 8, 359 (1962)

    Article  CAS  Google Scholar 

  27. K.V. Sita Ram Rao. Wall Effects in Packed Beds, vol. PhD Thesis, Indian Institute of Science, (Bangalore, India, 1994)

  28. W. van Antwerpen, C.G. du Toit, P.G. Rousseau, Nucl. Eng. Design 240, 1803 (2010)

    Article  Google Scholar 

  29. A.J. Sederman, M.L. Johns, A.S. Bramley, P. Alexander, L.F. Gladden, Chem. Eng. Sci. 52, 2239 (1997)

    Article  CAS  Google Scholar 

  30. D. Toye, P. Marchot, M. Crine, A.M. Pelsser, G. L’Homme, Chem. Eng. Process 37, 511 (1998)

    Article  CAS  Google Scholar 

  31. S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)

    Article  CAS  Google Scholar 

  32. G.D. Scottand, D.M. Kilgour, Brit. J. Appl. Phys. 2, 863 (1969)

    Google Scholar 

Download references

Acknowledgments

M.C. Almazan Almazan acknowledges financial support of Ministerio de Educación y Ciencia (MEC) and Fundación Española para la Ciencia y la Tecnología (FCYT) as a postdoctoral contract. The authors also acknowledge the Interuniversity Attraction Pole (IAP-P6/17) for financial support. A. Léonard and N. Job thanks the FRS-FNRS (Fund for Scientific Research) for their Research Associate and Postdoctoral Researcher positions, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Léonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almazán-Almazán, M.C., Léonard, A., Job, N. et al. Three-dimensional void space structure of activated carbon packed beds. J Porous Mater 18, 761–766 (2011). https://doi.org/10.1007/s10934-010-9438-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9438-5

Keywords

Navigation