Skip to main content

Advertisement

Log in

Sedimentary carbon forms in relation to climate and phytoplankton biomass in a large, shallow, hard-water boreal lake

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Carbon storage in lakes can have huge implications for the global carbon cycle, as lakes annually accumulate up to one half the amount of organic carbon buried in marine sediments. Yet little is known of the effect of recent climate change on carbon storage in lakes. We analyzed century-scale time series of climate variables (precipitation, temperature, NAO winter index) and profiles of sediment characteristics in a dated sediment core from shallow, eutrophic Lake Võrtsjärv, south Estonia. We used path analysis to evaluate the effect of climate conditions on phytoplankton biomass in the lake and accumulation of organic and inorganic carbon in the sediment. Changes in winter and spring climate influenced the lake’s phytoplankton growth significantly. Carbon pathways in hard-water Lake Võrtsjärv were influenced by both hydrological (most significant in colder periods) and biogeochemical processes. Increased nutrient and water input to Lake Võrtsjärv, anticipated with projected climate warming, favours greater in-lake productivity, larger accumulation of inorganic carbon in sediments, and an increase in organic carbon mineralisation, which fuels atmospheric greenhouse gas emissions from the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Alliksaar T, Heinsalu A (2012) A radical shift from soft-water to hard-water lake: palaeolimnological evidence from Lake Kooraste Kõverjärv, southern Estonia. Est J Earth Sci 61:317–327

    Article  Google Scholar 

  • Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27

    Article  Google Scholar 

  • Arvola L, George G, Livingstone DM, Järvinen M, Blenckner T, Dokulil MT, Jennings E, Nic Aonghusa C, Nõges P, Nõges T, Weyhenmeyer GA (2010) The impact of the changing climate on the thermal characteristics of lakes. In: George G (ed) The impact of climate change on European lakes, 1st edn. Springer, Berlin, pp 85–102

    Google Scholar 

  • BACC Author Group (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin

    Book  Google Scholar 

  • Blenckner T, Adrian R, Arvola L, Järvinen M, Nõges P, Nõges T, Pettersson K, Weyhenmeyer GA (2010) The impact of climate change on lakes in northern Europe. In: George G (ed) The impact of climate change on European lakes, 1st edn. Springer, Berlin, pp 339–358

    Chapter  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg J, Melack JM (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon cycle. Ecosystems 10:171–184

    Article  Google Scholar 

  • Cremona F, Kõiv T, Nõges P, Pall P, Rõõm E-I, Feldmann T, Viik M, Nõges T (2014) Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731:109–123

    Article  Google Scholar 

  • Dean WE (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393

    Article  Google Scholar 

  • Dean WE (2006) Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park. U.S. Geological Survey Open-File Report 2006-1053. U.S. Geological Survey, Reston, Virginia

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • Dearing JA, Jones RT (2003) Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment record. Glob Planet Chang 39:147–168

    Article  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles. doi:10.1029/2006GB002854

    Google Scholar 

  • Eilers JM, Kann J, Cornett J, Moser K, St AmandA (2004) Paleolimnological evidence of change in a shallow, hypereutrophic lake: Upper Klamath Lake, Oregon, USA. Hydrobiologia 520:7–18

    Article  Google Scholar 

  • Elder JF, Rybicki NB, Carter V, Weintraub V (2000) Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands 20:113–125

    Article  Google Scholar 

  • Engstrom DR, Schottler SP, Leavitt PR, Havens KE (2006) A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecol Appl 16:1194–1206

    Article  Google Scholar 

  • Finlay KP, Leavitt PR, Patoine A, Wissel B (2010) Magnitudes and controls of organic carbon flux through a chain of hard-water lakes on the northern Great Plains. Limnol Oceanogr 55:1551–1564

    Article  Google Scholar 

  • Gälman V, Rydberg J, de-Luna SS, Bindler R, Renberg I (2008) Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–1082

    Article  Google Scholar 

  • George DG, Maberly SC, Hewitt DP (2004) The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshw Biol 49:760–774

    Article  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481

    Article  Google Scholar 

  • Handbook of USSR Climate (1968) Estonian SSR. Atmospheric humidity, precipitation and snow-cover, vol 4. Central Directorate of Hydrometeorological Services of Ministry of USSR, Central Directorate of Hydrometeorological Services of Estonian SSR, Tallinn Hydrometeorological Observatory. Leningrad, Gidrometeoizdat (in Russian)

  • Heinsalu A, Luup H, Alliksaar T, Nõges P, Nõges T (2008) Water level changes in a large shallow lake as reflected by the plankton: periphyton-ratio of sedimentary diatoms. Hydrobiologia 599:23–30

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Hodell DA, Schelske CL, Fahnenstiel GL, Robins LL (1998) Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol Oceanogr 43:187–199

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic oscillation. Science 291:603–605

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaagus J (2006) Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor Appl Climatol 83:77–88

    Article  Google Scholar 

  • Järvet A (2004) Hydrology of Lake Võrtsjärv. In: Haberman J, Pihu E, Raukas A (eds) Lake Võrtsjärv. Estonian Encyclopaedia, Tallinn, pp 105–139

    Google Scholar 

  • Järvet A, Jaagus J, Roosaare J, Tamm T, Vallner L (2000) Impact of climate change on water balance elements in Estonia. Geogr Stud 8:35–55

    Google Scholar 

  • Kalff J (2001) Limnology. Prentice Hall, Upper Saddle River, pp 309–348

    Google Scholar 

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373

    Article  Google Scholar 

  • Koeve W (2002) Upper ocean carbon fluxes in the Atlantic Ocean: the importance of the POC:PIC ratio. Glob Biogeochem Cycles 16:4-1–4-17

    Article  Google Scholar 

  • Laas A, Nõges P, Kõiv T, Nõges T (2012) High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694:57–74

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer, Dordrecht, pp 295–325

    Chapter  Google Scholar 

  • Leeben A, Tõnno I, Freiberg R, Lepane V, Bonningues N, Makarõtševa N, Heinsalu A, Alliksaar T (2008) History of anthropogenically mediated eutrophication of Lake Peipsi as revealed by the stratigraphy of fossil pigments and molecular size fractions of pore-water dissolved organic matter. Hydrobiologia 599:49–58

    Article  Google Scholar 

  • Lu Y, Meyers PA, Eadie BJ, Robbins JA (2010) Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments. J Paleolimnol 43:261–272

    Article  Google Scholar 

  • Lücke A, Schleser GH, Zolitschka B, Negendank JFW (2003) A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quat Sci Rev 22:569–580

    Article  Google Scholar 

  • Mander Ü, Kull A, Kuusemets V, Tamm T (2000) Nutrient runoff dynamics in a rural catchment: influence of land-use changes, climatic fluctuations and ecotechnological measures. Ecol Eng 14:405–417

    Article  Google Scholar 

  • Mooij WM, Janse JH, De Senerpont Domis LN, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454

    Article  Google Scholar 

  • Moss B (2012) Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Sci Total Environ 434:130–142

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, De Meester L, Paerl H, Scheffer M (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105

    Article  Google Scholar 

  • Nõges T, Nõges P (2006) Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environ Res 11:67–80

    Google Scholar 

  • Nõges P, Nõges T (2012) Võrtsjärv Lake in Estonia. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Netherlands, pp 850–861

    Google Scholar 

  • Nõges P, Tuvikene L, Nõges T, Kisand A (1999) Primary production, sedimentation and resuspension in large shallow Lake Võrtsjärv. Aquat Sci 61:168–182

    Article  Google Scholar 

  • Nõges T, Nõges P, Laugaste R (2003) Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506–509:257–263

    Article  Google Scholar 

  • Nõges P, Kägu M, Nõges T (2007) Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia. Hydrobiologia 581:125–134

    Article  Google Scholar 

  • Nõges P, Mischke U, Laugaste R, Solimini AG (2010a) Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646:33–48

    Article  Google Scholar 

  • Nõges P, Nõges T, Laas A (2010b) Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv, Estonia. Aquat Ecosyst Health 13:154–163

    Article  Google Scholar 

  • Pall P, Vilbaste S, Kõiv T, Kõrs A, Käiro K, Laas A, Nõges P, Nõges T, Piirsoo K, Toomsalu L, Viik M (2011) Fluxes of carbon and nutrients through the inflows and outflow of Lake Võrtsjärv, Estonia. Est J Ecol 60:39–53

    Article  Google Scholar 

  • Patoine A, Leavitt PR (2006) Century-long synchrony of fossil algae in a chain of Canadian prairie lakes. Ecology 87:1710–1721

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. ISBN: 3-900051-07-0

  • Raukas A, Tavast E (2002) The Holocene sedimentation history of Lake Võrtsjärv, central Estonia. Geol Q 46:199–206

    Google Scholar 

  • Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, Jeppesen E, Korhola A, Punning J-M (2011) Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedence. J Paleolimnol 45:447–468

    Article  Google Scholar 

  • Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology. A user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54:2243–2254

    Article  Google Scholar 

  • Toming K, Tuvikene L, Vilbaste S, Agasild H, Viik M, Kisand A, Feldmann T, Martma T, Jones RI, Nõges T (2013) Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnol Oceanogr 58:1259–1270

    Article  Google Scholar 

  • Tõnno I, Kirsi A-L, Freiberg R, Alliksaar T, Lepane V, Kõiv T, Kisand A, Heinsalu A (2013) Ecosystem changes in large and shallow Võrtsjärv, a lake in Estonia—evidence from sediment pigments and phosphorus fractions. Boreal Environ Res 18:195–208

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by institutional research grants IUT21-2 and IUT1-8 from the Estonian Science Agency, by Estonian Science Foundation Grants No. ETF9031 and ETF9102 and by a Swiss Grant from the Programme “Enhancing public environmental monitoring capacities.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmar Tõnno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehapalu, K., Tõnno, I., Reitalu, T. et al. Sedimentary carbon forms in relation to climate and phytoplankton biomass in a large, shallow, hard-water boreal lake. J Paleolimnol 57, 81–93 (2017). https://doi.org/10.1007/s10933-016-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9931-1

Keywords

Navigation