Skip to main content

Advertisement

Log in

Wind-driven waterbodies: a new category of lake within an alternative sedimentologically-based lake classification

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Lakes are common natural systems for which sedimentation is considered to be relatively simple, generally dominated by fluvial processes along the margin and prevailing low-energy settling in the central, deeper parts. However, for many lakes, higher-energy wind-driven processes dominate. As such, a new category of lakes is proposed, herein referred to as wind-driven waterbodies (WWB). WWB display a sedimentation largely dominated by wave related processes and wind-induced lake-scale water circulation evidenced by the construction of beach ridges, spits or cuspate spits along their shorelines, and by sediment drifts, sedimentary shelf progradation and erosional surfaces in their deeper, offshore domains. WWB are observed worldwide, they share a common physiography that favours wind-forced hydrodynamics and related sedimentation patterns. This physiography is expressed by the IWWB index, a ratio of the maximum representative fetch relative to mean basin depth. It is proposed that an index value greater than three favours the evolution of a lake as a WWB. The WWB concept represents a new end-member in an alternative, sedimentologically-based lake classification that is proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KD (2010) Lake levels and sedimentary environments during deposition of the Trego Hot Springs and Wono tephras in the Lake Lahontan basin, Nevada, USA. Quat Res 73:118–129

    Article  Google Scholar 

  • Adams KD, Wesnousky SG (1998) Shoreline processes and the age of the Lake Lahontan highstand in the Jessup embayment, Nevada. Geol Soc Am Bull 110:1318–1332

    Article  Google Scholar 

  • Allan JC, Kirk RM (2000) Wind wave characteristics at Lake Dunstan, South Island, New Zealand. N Z J Mar Freshw Res 34:573–591

    Article  Google Scholar 

  • Allard J, Bertin X, Chaumillon E, Pouget F (2008) Sand spit rhythmic development: a potential record of wave climate variations? Arçay Spit, western coast of France. Mar Geol 253:107–131

    Article  Google Scholar 

  • Ashton A, Murray AB, Littlewood R, Lewis DA, Hong P (2009) Fetch-limited self-organization of elongate water bodies. Geology 37:187–190

    Article  Google Scholar 

  • Blair T (1999) Sedimentology of gravely Lake Lahontan highstand shoreline deposits, Churchill Butte, Nevada, USA. Sediment Geol 123:199–218

    Article  Google Scholar 

  • Boomer I, Aladin N, Plotnikov I, Whatley R (2000) The palaeolimnology of the Aral Sea: A review. Quat Sci Rev 19:1259–1278

    Article  Google Scholar 

  • Bouchette F, Seguret M, Moussine-Pouchkine A (2001) Coarse carbonate breccias as a result of water-wave cyclic loading (uppermost Jurassic-South-East Basin, France). Sedimentology 48:767–789

    Article  Google Scholar 

  • Bouchette F, Schuster M, Ghienne J-F, Denamiel C, Roquin C, Abderamane M, Marsaleix P, Duringer P (2010) Hydrodynamics in the Holocene lake MegaChad. Quat Res 73:226–236

    Article  Google Scholar 

  • Branstator DK (2009) Origins of types of lake basins. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Academic Press, London, pp 613–624

    Chapter  Google Scholar 

  • Butzer KW (1980) The Holocene lake plain of North Rudolph, East Africa. Phys Geogr 1:42–58

    Google Scholar 

  • Carroll AR, Bohacs K (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102

    Article  Google Scholar 

  • Cohen AS (2003) Paleolimnology. The history and evolution of lake systems. Oxford University Press, New York

    Google Scholar 

  • Currey DR (1990) Quaternary palaeolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 76:189–214

    Article  Google Scholar 

  • Dam G, Surlik F (1992) Forced regressions in a large wave- and storm-dominated anoxic lake, Rhaetian-Sinemurian Kap Stewart Formation, East Greenland. Geology 20:749–752

    Article  Google Scholar 

  • Dam G, Surlik F (1993) Cyclic sedimentation in a large wave- and storm-dominated anoxic lake; Kap Stewart Formation (Rhaetian-Sinemurian), Jameson Land, East Greenland. IAS Spec Publ 18:419–448

    Google Scholar 

  • Davidson-Arnott R, Van Heyningen A (2003) Migration and sedimentology of longshore sandwaves, Long Point, Lake Erie, Canada. Sedimentology 50:1123–1137

    Article  Google Scholar 

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. Advanced series on ocean engineering 2. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Desiage P-A, Lajeunesse P, St-Onge G, Normandeau A, Ledoux G, Guyard H, Pienitz R (2015) Deglacial and postglacial evolutionof the Pingualuit Crater Lake basin, northern Québec (Canada). Geomorphology 248:327–343

    Article  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Fisher RL (1955) Cuspate spits of Saint Lawrence Island, Alaska. J Geol 63:133–142

    Article  Google Scholar 

  • Garcin Y, Melnick D, Strecker MR, Olago D, Tiercelin J-J (2012) East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth Planet Sci Lett 331–332:322–334

    Article  Google Scholar 

  • Ghienne J-F, Schuster M, Bernard A, Duringer P, Brunet M (2002) The Holocene giant Lake Chad revealed by digital elevation models. Quat Int 87:81–85

    Article  Google Scholar 

  • Gilbert GK (1890) Lake Bonneville. US Geol Surv Mono, vol 1. 438 pp

  • Håkanson L (1982) Bottom dynamics in lakes. Hydrobiologia 91:9–22

    Article  Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. The Blackburn Press, Caldwell

    Book  Google Scholar 

  • Hanson JK (2007) Lakes. Chelsea House, New York

    Google Scholar 

  • Holcombe TL, Taylor LA, Reid DF, Warren JS, Vincent PA, Herdendorf CE (2003) Revised Lake Erie postglacial lake level history based on new detailed bathymetry. J Gt Lakes Res 29:681–704

    Article  Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, vol. 1. Geography, physics and chemistry. Wiley, New York

    Google Scholar 

  • Johnson TC, Halfman JD, Rosendahl BR, Lister GS (1987) Climatic and tectonic effects on sedimentation in a rift-valley lake: evidence from high-resolution seismic profiles, Lake Turkana, Kenya. Geol Soc Am Bull 98:439–447

    Article  Google Scholar 

  • Kelts K, Zao CK, Lister G, Qing YJ, Hong GZ, Niessen F, Bonani G (1989) Geological fingerprints of climate history: a cooperative study of Qinghai Lake, China. Eclogae Geol Helv 82:167–182

    Google Scholar 

  • Komatsu G, Brantingham P, Olsen J, Bake V (2001) Paleoshoreline geomorphology of Boon Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39:83–98

    Article  Google Scholar 

  • Krist FJ, Schaetzl R (2001) Paleowind (11,000 BP) directions derived from lake spits in northern Michigan. Geomorphology 38:1–18

    Article  Google Scholar 

  • Lajeunesse P, Sinkunas B, Morissette A, Normandeau A, Joyal G, St-Onge G, Locat J (in press) Large-scale seismically-induced mass-movements in a former glacial lake basin: Lake Témiscouata, northeastern Appalachians (eastern Canada). Mar Geol

  • Lewis WM Jr (1983) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787

    Article  Google Scholar 

  • Manley PL, Manley TO, Hayo K, Cronin T (2011) Small-scale lacustrine drifts in Lake Champlain, Vermont. J Gt Lakes Res 38:88–100

    Article  Google Scholar 

  • Matishov G (2006) New data on bottom geomorphology of the Sea of Azov. Dokl Earth Sci 409A:853–858

    Article  Google Scholar 

  • Matoshko A, Gozhik P, Semenenko V (2009) Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains. Glob Planet Change 68:270–287

    Article  Google Scholar 

  • Nielsen L, Johannessen P (2009) Facies architecture and depositional processes of the Holocene-Recent accretionary forced regressive Skagen spit system, Denmark. Sedimentology 56:935–968

    Article  Google Scholar 

  • Nordstrom KF, Jackson NL (2012) Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: a review. Earth Sci Rev 111:232–247

    Article  Google Scholar 

  • Normandeau A, Lajeunesse P, Philibert G (2013) Late-Quaternary morphostratigraphy of the Lake St-Joseph (southeastern Canadian Shield): evolution from a semi-enclosed glacimarine basin to a postglacial lake. Sed Geol 295:38–52

    Article  Google Scholar 

  • Nutz A, Ghienne J-F, Schuster M, Roquin C, Raynal O, Bouchette F, Duringer P, Cousineau PA (2014) Seismic-stratigraphic record of a deglaciation sequence: from the marine Laflamme Gulf to Lake Saint-Jean (late Quaternary, Québec, Canada). Boreas 43:309–329

    Article  Google Scholar 

  • Nutz A, Ghienne J-F, Schuster M, Dietrich P, Roquin C, Hay MB, Bouchette F, Cousineau PA (2015a) Forced regressive deposits of a deglaciation sequence: example from the Late Quaternary succession in the Lake Saint-Jean basin (Québec, Canada). Sedimentology 62:1573–1610

    Article  Google Scholar 

  • Nutz A, Schuster M, Ghienne J-F, Roquin C, Hay MB, Rétif F, Certain R, Robin N, Raynal O, Cousineau PA, SIROCCO Team Bouchette F (2015b) Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada). Geol Soc Am Bull 127:1194–1208

    Article  Google Scholar 

  • Raynal O, Bouchette F, Certain R, Séranne M, Dezileau L, Sabatier P, Lofi J, Bui Xuan Hy A, Briqueu L, Pezard P, Tessier B (2009) Control of alongshore-oriented sand spits on the dynamics of a wave-dominated coastal system (Holocene deposits, northern Gulf of Lions, France). Mar Geol 264:242–257

    Article  Google Scholar 

  • Reid I, Frostick LE (1985) Beach orientation, bar morphology and the concentration of metalliferous placer deposits: a case study, Lake Turkana, N Kenya. J Geol Soc Lond 142:837–848

    Article  Google Scholar 

  • Renaut RW, Owen RB (1991) Shore-zone sedimentation and facies in a closed rift lake: the Holocene beach deposits of Lake Bogoria, Kenya. IAS Spec Publ 13:175–195

    Google Scholar 

  • Rowan DJ, Kalff J, Rasmussen JB (1992) Estimating the mud deposition boundary depth in lakes from wave theory. Can J Fish Aquat Sci 49:2490–2497

    Article  Google Scholar 

  • Saylor JH, Miller GS (1987) Studies of large-scale currents in Lake Erie. J Gt Lake Res 13:487–514

    Article  Google Scholar 

  • Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30:1131–1134

    Article  Google Scholar 

  • Schuster M, Duringer P, Ghienne J-F, Vignaud P, Beauvilain A, Mackaye HT, Brunet M (2003) Coastal conglomerates around the Hadjer El Khamis inselbergs (western Chad, central Africa): new evidence for Lake Mega-Chad episodes. Earth Surf Proc Land 28:1059–1069

    Article  Google Scholar 

  • Schuster M, Roquin C, Brunet M, Duringer P, Fontugne M, Mackaye H, Vignaud P, Ghienne J-F (2005) Holocene Lake Mega-Chad palaeoshorelines from space. Quat Sci Rev 24:1821–1827

    Article  Google Scholar 

  • Schuster M, Duringer P, Ghienne J-F, Roquin C, Sepulchre P, Moussa A, Lebatard AE, Mackaye HT, Likius A, Vignaud P, Brunet M (2009) Chad Basin: paleoenvironments of the Sahara since the Late Miocene. C R Geosci 341:603–611

    Article  Google Scholar 

  • Shan X, Yu X, Clift PD, Tan C, Jin L, Li M, Li W (2015) The ground penetrating radar facies and architecture of a paleo-spit from Huangqihai Lake, North China: implications for genesis and evolution. Sed Geol 323:1–14

    Article  Google Scholar 

  • Sly PG (1978) Sedimentary processes in lakes. In: Lerman A (ed) Lakes: Chemistry, Geology, Physics. Springer, Berlin, pp 65–89

    Chapter  Google Scholar 

  • Stewart CJ, Davidson-Arnott RG (1988) Morphology, formation and migration of longshore sandwaves; Long Point, Lake Erie, Canada. Mar Geol 81:63–77

    Article  Google Scholar 

  • Wagner B, Aufgebauer A, Vogel H, Zanchetta G, Sulpizio R, Damaschke M (2012) Late Pleistocene and Holocene contourite drift in Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 274:112–121

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Zecchin M, Caffau M, Civile D, Roda C (2010) Anatomy of a late Pleistocene clinoformal sedimentary body (Le Castella, Calabria, southern Italy): a case of prograding spit system? Sed Geol 223:291–309

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the GLADYS-SOLTC project (www.gladys-littoral.org) and www.soltc.org), ANR-KUNSHEN (ANR-2010-006), and NUCLEASPIT/PEPS-IN2P3. We acknowledge financial support from the CNRS-INSU (action SYSTER), and from “Fondation Université de Strasbourg” and “Cercle Gutenberg”. Finally, we are grateful to anonymous reviewer 1 and Steven Andrews for their useful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nutz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nutz, A., Schuster, M., Ghienne, JF. et al. Wind-driven waterbodies: a new category of lake within an alternative sedimentologically-based lake classification. J Paleolimnol 59, 189–199 (2018). https://doi.org/10.1007/s10933-016-9894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9894-2

Keywords

Navigation