Skip to main content

Advertisement

Log in

Climate and human land-use as a driver of Lake Narlay (Eastern France, Jura Mountains) evolution over the last 1200 years: implication for methane cycle

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This study aims at reconstructing the limnological conditions of Lake Narlay, a lake of which a previous study has shown major changes in the trophic reliance on methane of the benthic food web. The evolution of environmental and limnological conditions in and around Lake Narlay is reconstructed using combined analyses of subfossil chironomid remains, sedimentary pigments and organic carbon accumulation rates; whereas potential driving factors are reconstructed by pollen and coprophilous analyses and the use of climate paleo-records. The results suggest a complex combination of climate and anthropogenic pressure to explain the 1200 years of ecological trajectory of Lake Narlay. This ecological trajectory seems to be firstly control by climatic variability, because the colder event of the Little Ice Age induces a significant impact on chironomid assemblage, organic matter influx, and lake productivity. In a more recent time, the anthropogenic control seems to become predominant. The intensification of the agro-pastoral practices in the catchment area of Lake Narlay seems to induce the degradation of the oxygen conditions at the water/sediment interface. In addition, the present study gives also lines of evidence that the human intensification in the watershed of Lake Narlay seems to be the main cause of the major change in the contribution of biogenic methane to the benthic food web. However, the transition stage between the two trophic pathways (from absence to transfer of biogenic methane) involves a progressive change with intermediate limnological conditions, making the assessment of a tipping point in the temporal evolution difficult. Better knowledge of the relationships between the temporal evolution of limnological conditions and the activation of the trophic reliance on methane will require the study of other sites with different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson NJ, Renberg I, Segerstrom U (1995) Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon, Northern Sweden). J Ecol 83:809. doi:10.2307/2261418

    Article  Google Scholar 

  • Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84:969–981. doi:10.1890/0012-9658(2003)084[0969:MAASOC]2.0.CO;2

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. doi:10.1029/2004GB002238

    Google Scholar 

  • Belle S, Parent C, Frossard V et al (2014) Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J Paleolimnol 52:215–228. doi:10.1007/s10933-014-9789-z

    Article  Google Scholar 

  • Belle S, Millet L, Gillet F et al (2015a) Assemblages and paleo-diet variability of subfossil Chironomidae (Diptera) from a deep lake (Lake Grand Maclu, France). Hydrobiologia 755:145–160. doi:10.1007/s10750-015-2222-4

    Article  Google Scholar 

  • Belle S, Verneaux V, Millet L et al (2015b) A case-study of the past CH4 cycle in lakes by the combined use of dual isotopes (carbon and hydrogen) and ancient DNA of methane-oxidizing bacteria: rearing experiment and application to Lake Remoray (eastern France). Aquat Ecol 49:279–291. doi:10.1007/s10933-014-9789-z

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. F. Pfeil, München

    Google Scholar 

  • Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi:10.1016/j.quageo.2010.01.002

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London, p 276

    Google Scholar 

  • Coianiz L, Ariztegui D, Piovano EL et al (2014) Environmental change in subtropical South America for the last two millennia as shown by lacustrine pigments. J Paleolimnol 53:233–250. doi:10.1007/s10933-014-9822-2

    Article  Google Scholar 

  • Coolen MJ, Gibson JA (2009) Ancient DNA in lake sediment records. PAGES News 17:104–106

    Google Scholar 

  • Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50. doi:10.1016/j.palaeo.2005.11.028

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Article  Google Scholar 

  • Ekdahl EJ, Teranes JL, Guilderson TP et al (2004) Prehistorical record of cultural eutrophication from Crawford Lake, Canada. Geology 32:745–748. doi:10.1130/G20496.1

    Article  Google Scholar 

  • Etienne D, Jouffroy-Bapicot I (2014) Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Veg Hist Archaeobot 23:743–749. doi:10.1007/s00334-014-0439-1

    Article  Google Scholar 

  • Fægri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis. Wiley, Chichester, 328 pp

    Google Scholar 

  • Fritz SC (1989) Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, UK. J Ecol 77:182. doi:10.2307/2260924

    Article  Google Scholar 

  • Frossard V, Verneaux V, Millet L et al (2013) Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (δ13C) of chironomid and cladoceran subfossil remains. Freshw Biol 59:789–802. doi:10.1111/fwb.12304

    Article  Google Scholar 

  • Frossard V, Millet L, Verneaux V et al (2014) Depth-specific responses of a chironomid assemblage to contrasting anthropogenic pressures: a palaeolimnological perspective from the last 150 years. Freshw Biol 59:26–40. doi:10.1111/fwb.12243

    Article  Google Scholar 

  • Frossard V, Verneaux V, Millet L et al (2015) Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance. Oecologia 178:603–614. doi:10.1007/s00442-015-3225-6

    Article  Google Scholar 

  • Gauthier E (2004) Forêts et agriculteurs du Jura: les quatre derniers millénaires. Presses universitaires franc-comtoises, Besançon

    Google Scholar 

  • Gonzalez-Valencia R, Sepulveda-Jauregui A, Martinez-Cruz K et al (2014) Methane emissions from Mexican freshwater bodies: correlations with water pollution. Hydrobiologia 721:9–22. doi:10.1007/s10750-013-1632-4

    Article  Google Scholar 

  • Grey J, Kelly A, Ward S et al (2004) Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability. Freshw Biol 49:681–689. doi:10.1111/j.1365-2427.2004.01217.x

    Article  Google Scholar 

  • Guilizzoni P, Marchetto A, Lami A et al (2011) Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol 45:433–445. doi:10.1007/s10933-010-9421-9

    Article  Google Scholar 

  • Guiot J, Corona C, ESCARSEL members (2010) Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS One 5:e9972. doi:10.1371/journal.pone.0009972

    Article  Google Scholar 

  • Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3445–3456. doi:10.1016/j.quascirev.2011.09.006

    Article  Google Scholar 

  • Jankowski T, Livingstone DM, Bührer H et al (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–819

    Article  Google Scholar 

  • Jones RI, Carter CE, Kelly A et al (2008) Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89:857–864

    Article  Google Scholar 

  • Juutinen S, Rantakari M, Kortelainen P et al (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223

    Article  Google Scholar 

  • Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  Google Scholar 

  • Leavitt PR, Fritz SC, Anderson NJ et al (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348. doi:10.4319/lo.2009.54.6_part_2.2330

    Article  Google Scholar 

  • Liikanen A, Martikainen PJ (2003) Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake. Chemosphere 52:1287–1293. doi:10.1016/S0045-6535(03)00224-8

    Article  Google Scholar 

  • Little JL, Hall RI, Quinlan R, Smol JP (2000) Past trophic status and hypolimnetic anoxia during eutrophicaton and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can J Fish Aquat Sci 57:333–341. doi:10.1139/f99-235

    Article  Google Scholar 

  • Luoto TP (2012) How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages. Environ Earth Sci 68:1321–1329. doi:10.1007/s12665-012-1830-9

    Article  Google Scholar 

  • Luoto TP, Nevalainen L, Sarmaja-Korjonen K (2008) Multiproxy evidence for the “Little Ice Age” from Lake Hampträsk, Southern Finland. J Paleolimnol 40:1097–1113. doi:10.1007/s10933-008-9216-4

    Google Scholar 

  • Magny M, Gauthier E, Vannière B, Peyron O (2008) Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. Holocene 18:255–265. doi:10.1177/0959683607086763

    Article  Google Scholar 

  • Magny M, Peyron O, Gauthier E et al (2011) Quantitative estimates of temperature and precipitation changes over the last millennium from pollen and lake-level data at Lake Joux, Swiss Jura Mountains. Quat Res 75:45–54. doi:10.1016/j.yqres.2010.11.001

    Article  Google Scholar 

  • Magny M, Leroux A, Bichet V et al (2013) Climate, vegetation and land use as drivers of Holocene sedimentation: a case study from Lake Saint-Point (Jura Mountains, eastern France). Holocene 23:137–147. doi:10.1177/0959683612455550

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. doi:10.1016/0146-6380(93)90100-P

    Article  Google Scholar 

  • Millet L, Arnaud F, Heiri O et al (2009) Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps. Holocene 19:317–328. doi:10.1177/0959683608100576

    Article  Google Scholar 

  • Naeher S, Niemann H, Peterse F et al (2014) Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland). Org Geochem 66:174–181. doi:10.1016/j.orggeochem.2013.11.002

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Ravinet M, Syväranta J, Jones RI, Grey J (2010) A trophic pathway from biogenic methane supports fish biomass in a temperate lake ecosystem. Oikos 119:409–416. doi:10.1111/j.1600-0706.2009.17859.x

    Article  Google Scholar 

  • Reille M (1992–1998) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique historique et Palynologie, Université d’Aix-Marseille III

  • Renberg I, Bindler R, Brännvall M-L (2001) Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11:511–516. doi:10.1191/095968301680223468

    Article  Google Scholar 

  • Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae (Insecta: diptera: Chrironomidae) based on cephalic setation. J Paleolimnol 25:81–99. doi:10.1023/A:1008185517959

    Article  Google Scholar 

  • Sanseverino AM, Bastviken D, Sundh I et al (2012) Methane carbon supports aquatic food webs to the fish level. PLoS One 7:e42723. doi:10.1371/journal.pone.0042723

    Article  Google Scholar 

  • Sollberger S, Corella JP, Girardclos S et al (2013) Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva). Aquat Sci 76:89–101. doi:10.1007/s00027-013-0319-2

    Article  Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature. AMBIO: J Hum Environ 36:614–621. doi:10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • van Geel BV (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM et al (eds) Tracking environmental change using lake sediments. Springer, Netherlands, pp 99–119

    Google Scholar 

  • van Geel B, Buurman J, Brinkkemper O et al (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883. doi:10.1016/S0305-4403(02)00265-0

    Article  Google Scholar 

  • van Hardenbroek M, Heiri O, Grey J et al (2010) Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes? J Paleolimnol 43:235–245. doi:10.1007/s10933-009-9328-5

    Article  Google Scholar 

  • van Hardenbroek M, Heiri O, Parmentier FJW et al (2013) Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains. Quat Sci Rev 66:74–84. doi:10.1016/j.quascirev.2012.04.009

    Article  Google Scholar 

  • Verbruggen F, Heiri O, Reichart G-J, Lotter AF (2010) Chironomid δ18O as a proxy for past lake water δ18O: a Lateglacial record from Rotsee (Switzerland). Quat Sci Rev 29:2271–2279. doi:10.1016/j.quascirev.2010.05.030

    Article  Google Scholar 

  • Verbruggen F, Heiri O, MeriläInen JJ, Lotter AF (2011) Subfossil chironomid assemblages in deep, stratified European lakes: relationships with temperature, trophic state and oxygen. Freshw Biol 56:407–423. doi:10.1111/j.1365-2427.2010.02508.x

    Article  Google Scholar 

  • Verneaux V, Verneaux J, Schmitt A et al (2009) The Lake Biotic Index (LBI): an applied method for assessing the biological quality of lakes using macrobenthos; the Lake Châlain (French Jura) as an example. Ann Limnol—Int J Limnol 40:1–9. doi:10.1051/limn/2004003

    Article  Google Scholar 

  • Wagner A, Volkmann S, Dettinger-Klemm PMA (2012) Benthic–pelagic coupling in lake ecosystems: the key role of chironomid pupae as prey of pelagic fish. Ecosphere. doi:10.1890/ES11-00181.1

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Winfrey MR, Zeikus JG (1979) Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl Environ Microb 37:213–221

    Google Scholar 

  • Wooller MJ, Pohlman JW, Gaglioti BV et al (2012) Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years. J Paleolimnol 48:27–42. doi:10.1007/s10933-012-9591-8

    Article  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D et al (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491. doi:10.1038/nature13164

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of the “Zone Atelier Arc Jurassien”. Financial support for this study was provided by the Conseil Regional de Franche-Comté and OREAS project. We thank Julien Didier (Chrono-Environnement, Besançon) for assistance in pollen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Belle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10933_2015_9864_MOESM1_ESM.pdf

ESM1 The stratigraphic diagram shows the temporal evolution of the five dominant chironomid taxa (Nar13_P1 core). The data are expressed as a percentage of the total chironomid (%). Dendrogram based on chironomid assemblages, constructed by hierarchical clustering analysis (Bray-Curtis distance, CONISS linkage method). The dashed line indicates significant changes according to the broken-stick model. Zonation on the right corresponds to the HC accumulation rates zonation. (PDF 384 kb)

10933_2015_9864_MOESM2_ESM.pdf

ESM2 Temporal evolution of coprophilous fungi, cereals, API and relative abundance based on the AP/TLP ratio. Dendrogram based on spores data expressed in relative abundance, and constructed by hierarchical clustering analysis (Bray-Curtis distance, CONISS linkage method). The dashed line indicates significant changes according to the broken-stick model. Zonation on the right indicates the beginning of the intensification (ca. 1550) based on pollen accumulation rates. (PDF 372 kb)

10933_2015_9864_MOESM3_ESM.pdf

ESM3 Depth’s age distribution of changes which producing at 39.5 cm in the Nar10_P1 core (change in spores data; Fig. 4) and at 41 cm for the Nar13_P1 core (change in chironomid data; Fig. 2). (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belle, S., Verneaux, V., Millet, L. et al. Climate and human land-use as a driver of Lake Narlay (Eastern France, Jura Mountains) evolution over the last 1200 years: implication for methane cycle. J Paleolimnol 55, 83–96 (2016). https://doi.org/10.1007/s10933-015-9864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-015-9864-0

Keywords

Navigation