Skip to main content
Log in

Relatedness between contemporary and subfossil cladoceran assemblages in Turkish lakes

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aladin NV (1991) Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral Sea. Hydrobiologia 225:291–299

    Article  Google Scholar 

  • Amsinck SL, Jeppesen E, Landkildehus F (2005) Relationships between environmental variables and zooplankton subfossils in the surface sediments of 36 shallow coastal brackish lakes with special emphasis on the role of fish. J Paleolimnol 33:39–51

    Article  Google Scholar 

  • Amsinck SL, Strzelczak A, Bjerring R, Landkildehus F, Lauridsen TL, Søndergaard M, Jeppesen E (2006) Lake depth rather than fish planktivory determine cladoceran community structure in Faroese lakes—evidence from contemporary data and sediments. Freshw Biol 51:2124–2142

    Article  Google Scholar 

  • Anderson NJ, Battarbee RW (1994) Aquatic community persistence and variability: a palaeolimnological perspective. In: Giller PS, Hildrew AG, Raffelli D (eds) Aquatic ecology: scale. Press, Oxford, Pattern and Process. Blackwell Sci, pp 233–259

    Google Scholar 

  • Beklioglu M, Meerhoff M, Søndergaard M, Jeppesen E (2011) Eutrophication and restoration of shallow lakes from cold temperate to a warm Mediterranean and a (sub) tropical climate. In: Ansari AA, Singh Gill S, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control, vol 1. Springer, New York, pp 91–108

    Google Scholar 

  • Bezirci G, Akkas SB, Rinke K, Yildirim F, Kalaylioglu Z, Severcan F, Beklioglu M (2012) Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex. Ecotoxicology 21:601–614

    Article  Google Scholar 

  • Bjerring R, Becares E, Declerck S, Gross EM, Hansson LA, Kairesalo T, Nykanen M, Halkiewic A, Kornijow R, Conde-Porcuna JM, Seferlis M, Noges T, Moss B, Amsinck SL, Odgaard BV, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshw Biol 54:2401–2417

    Article  Google Scholar 

  • Boersma M, van Tongeren OFR, Mooij WM (1996) Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can J Fish Aquat Sci 53:18–28

    Article  Google Scholar 

  • Boix D, Gascon S, Sala J, Badosa A, Brucet S, Lopez-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69

    Article  Google Scholar 

  • Boronat L, Miracle MR, Armengol X (2001) Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442:75–88

    Article  Google Scholar 

  • Bos DG, Cumming BF, Smol JP (1999) Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392:129–141

    Article  Google Scholar 

  • Brucet S, Boix D, Gascón S, Sala J, Quintana XD, Badosa A, Søndergaard M, Lauridsen TL, Jeppesen E (2009) Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32:692–702

    Article  Google Scholar 

  • Bucak T, Saraoğlu E, Levi EE, Tavşanoğlu UN, Çakıroğlu Aİ, Jeppesen E, Beklioğlu M (2012) The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshw Biol 57(8):1631–1642

    Article  Google Scholar 

  • Canfield DE, Shireman JV, Colle DE, Haller WT, Watkins CE, Maceina MJ (1984) Prediction of chlorophyll-a concentrations in Florida lakes: importance of aquatic macrophytes. Can J Fish Aquat Sci 41:497–501

    Article  Google Scholar 

  • Caroni R, Irvine K (2010) The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biol Environ Proc R Ir Acad 110B:35–53

    Article  Google Scholar 

  • Chen G, Dalton C, Taylor D (2010) Cladocera as indicators of trophic state in Irish lakes. J Paleolimnol 44:465–481

    Article  Google Scholar 

  • Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117–134

    Article  Google Scholar 

  • Davidson TA, Bennion H, Sayer C, Jeppesen E, Clarke GH, Morley D, Odgaard BV, Rasmussen P, Rawcliffe R, Salgado J, Amsinck SL (2011a) The role of cladocerans in tracking long-term in shallow lake trophic status. Hydrobiologia 676:129–142

    Article  Google Scholar 

  • Davidson TA, Amsinck SL, Bennike O, Landkildehus F, Lauridsen TL, Jeppesen E (2011b) Inferring a single variable from an assemblage with multiple controls: getting into deep water with cladoceran lake-depth transfer functions. Hydrobiologia 676:129–142

    Article  Google Scholar 

  • Davidson TA, Reid MA, Sayer CD, Chilcott S (2013) Palaeolimnological records of shallow lake biodiversity change: exploring the merits of single versus multi-proxy approaches. J Paleolimnol 49:431–446

    Article  Google Scholar 

  • Declerck S, Vandekerkhove J, Johansson L, Muylaert K, Conde-Porcuna JM, Van der Gucht K, Perez-Martinez C, Lauridsen T, Schwenk K, Zwart G, Rommens W, Lopez-Ramos J, Jeppesen E, Vyverman W, Brendonck L, De Meester L (2005) Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86:1905–1915

    Article  Google Scholar 

  • Dodson SI, Frey DG (2001) Cladocera and other Branchiopoda. In: Ecology and classification of North American freshwater invertebrates, p 849–913

  • Einsle U (1993) Crustacea Copepoda, Calanoida und Cyclopoida. Gustav Fisher Verlag, Stuttgart, p 208

    Google Scholar 

  • Flöβner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden

    Google Scholar 

  • Frey DG (1959) The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Int Rev Ges Hydrobiol 44:27–50

    Article  Google Scholar 

  • Frey DG (1960) On the occurrence of cladoceran remains in lake sediments. Proc Natl Acad Sci USA 46(6):917–920

    Article  Google Scholar 

  • Frey DG (1964) Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergeb der Limnol 2:1–114

    Google Scholar 

  • Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. John Wiley & Sons Ltd, Hoboken, pp 667–692

    Google Scholar 

  • Frey DG (1988) What is paleolimnology? J Paleolimnol 1:5–8

    Google Scholar 

  • Frey DG (1993) The penetration of Cladocera into saline waters. Hydrobiologia 267:233–248

    Article  Google Scholar 

  • Gliwicz ZM (2003) Between hazards of starvation and risk of predation: the ecology of offshore animals. In: Kinne O (ed) Excellence of ecology, Book 12. International Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Gower JC (1971) Statistical methods of comparing different multivariate analyses of the same data. In: Hodson FR, Kendall DG, Tautu P (eds) Mathematics in the archaeological and historical sciences. Edinburgh University Press, Edinburgh, pp 138–149

    Google Scholar 

  • Green AJ, Fuentes C, Moreno-Ostos E, Rodrigues da Silva SL (2005) Factors influencing cladoceran abundance and species richness in brackish lakes in Eastern Spain. Ann Limnol Int J Limnol 41(2):73–81

    Article  Google Scholar 

  • Gyllström M, Hansson LA, Jeppesen E, Garcia-Criado F, Gross E, Irvine K, Kairesalo T, Kornijow R, Miracle MR, Nykänen M, Noges T, Romo S, Stephen D, Van Donk E, Moss B (2005) Zooplankton community structure in shallow lakes: interaction between climate and productivity. Limnol Oceanogr 50:2008–2021

    Article  Google Scholar 

  • Haberman J, Laugaste R (2003) On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Vortsjarv). Hydrobiologia 506:737–744

    Article  Google Scholar 

  • Hann BJ (1989) Methods in quaternary ecology #6 Cladocera. Geosci Can 16:17–26

    Google Scholar 

  • Hobaek A, Manca M, Andersen T (2002) Factors influencing species richness in lacustrine zooplankton. Acta Oecol 23:155–163

  • Hofmann W (1987) Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321

    Article  Google Scholar 

  • Hülsmann S, Mehner T (1997) Predation by under yearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshw Biol 38:209–219

    Article  Google Scholar 

  • Jackson DA (1995) PROTEST: a Procrustean randomization test of community environment concordance. Ecoscience 2:297–303

    Google Scholar 

  • Jensen E, Brucet S, Meerhoff M, Nathansen L, Jeppesen E (2010) Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators. Hydrobiologia 646:215–229

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Kanstrup E, Petersen B, Eriksen RB, Hammershoj M, Mortensen E, Jensen JP, Have A (1994) Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275(276):15–30

    Article  Google Scholar 

  • Jeppesen E, Madsen EA, Jensen JP, Anderson NJ (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lake. Freshw Biol 36:115–127

    Article  Google Scholar 

  • Jeppesen E, Lauridsen TL, Mitchell SF, Christoffersen K, Burns CW (2000) Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J Plankton Res 22:951–968

    Article  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. TREE 16(4):191–198

    Google Scholar 

  • Jeppesen E, Jensen JP, Lauridsen TL, Amsinck SL, Christoffersen K, Søndergaard M, Mitchell SF (2003) Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491:321–330

    Article  Google Scholar 

  • Jeppesen E, Noges P, Davidson TA, Haberman J, Noges T, Blank K, Lauridsen TL, Søndergaard M, Sayer C, Laugaste R, Johansson LS, Bjering R, Amsink SL (2011a) Zooplankton as indicators in lakes: a scientific-based pleafor including zooplankton in the ecological qualityassessment of lakes according to the European WaterFramework Directive (WFD). Hydrobiologia 676:279–297

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffman CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioğlu M, Meerhoff M, Özen A, Özkan K (2011b) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21

    Article  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as axtraction solvent. Arch Hydrobiol 109:445–454

    Google Scholar 

  • Justel A, Peña D, Zamar R (1997) A multivariate Kolmogorov–Smirnov test of goodness of fit. Stat Probab Lett 35(3):251–259

    Article  Google Scholar 

  • Kattel G, Battarbee R, Mackay A, Birks HJB (2007) Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? J Paleolimnol 38:157–181

    Article  Google Scholar 

  • Kerfoot WC (1995) Bosmina remains in Lake Washington sediments: qualitative heterogeneity of bay environments and qualitative correspondence to production. Limnol Oceanogr 40:211–225

    Article  Google Scholar 

  • Leavitt PR, Sanford PR, Carpenter SR, Kitchell JF (1994) An annual fossil record of production, planktivory and piscivory during whole-lake manipulations. J Paleolimnol 11:133–149

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Levi EE, Çakıroğlu Aİ, Bucak T, Odgaard BV, Davidson TA, Jeppesen E, Beklioğlu M (2014) Similarity between contemporary vegetation and plant remains in the sediment surface in Mediterranean lakes. Freshw Biol. doi:10.1111/fwb.12299

    Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association, Ambleside, p 36

    Google Scholar 

  • Moss B, Stephen D, Alvarez C, Becares E, van de Bund W, Collings SE, van Donk E, de Eyto E, Feldmann T, Fernández-Aláez C, Fernández-Aláez M, Franken RJM, García-Criado F, Gross EM, Gyllström M, Hansson LA, Irvine K, Järvalt A, Jensen JP, Jeppesen E, Kairesalo T, Kornijów R, Krause T, Künnap H, Laas A, Lill E, Lorens B, Luup H, Miracle MR, Nõges P, Nõges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujõe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv Mar Freshw Ecosyst 13:507–549

    Article  Google Scholar 

  • Müeller WP (1964) The distribution of cladoceran remains in surficial sediments from three Northern Indiana Lakes. Invest Indiana Lakes Streams 6:1–63

    Google Scholar 

  • Nevalainen L (2010) Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Ecoscience 17:356–364

    Article  Google Scholar 

  • Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22

    Article  Google Scholar 

  • Nevalainen L, Luoto TP (2012) Intralake training set of fossil Cladocera for paleohydrological inferences: evidence for multicentennial drought during the Medieval Climate Anomaly. Ecohydrology 5:834–840

    Article  Google Scholar 

  • Nykänen M, Vakkilainen K, Liukkonen M, Kairesalo T (2009) Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records. J Paleolimnol 4:551–570

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R-Package version 1.15-1

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  Google Scholar 

  • Pontin RM (1978) A key to British freshwater planktonic Rotifera. Freshwater Biological Association, Ambleside, pp 5–15

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities, their seasonal variability and their representation in the sediment of subarctic Lake Saanajarvi. J Limnol 59(Suppl. 1):81–96

    Google Scholar 

  • Romo S, Villena MJ, Sahuquillo M, Soria JM, Gimenez M, Alfonso T, Vicente E, Miracle MR (2005) Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshw Biol 50:1706–1717

    Article  Google Scholar 

  • Ruttner-Kolisko A (1977) Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol Beih Ergebn Limnol 8:71–76

    Google Scholar 

  • Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Chang 44:163–180

    Article  Google Scholar 

  • Schuytema GS, Nebeker AV, Stutzman TW (1997) Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests. Arch Environ Contam Toxicol 33:194–198

    Article  Google Scholar 

  • Scourfield DJ, Harding JP (1966) A key to the British freshwater Cladocera with notes on their ecology, 3rd edn. Freshwater Biological Association, Ambleside, p 5

    Google Scholar 

  • Segers H (1995) Rotifera. Vol. 2, The Lecanidae (Monogononta). In: Dumont HJF, Nogrady T (eds) Guides to the identification of the microinvertebrates of the continental waters of the World 6. SPB Academic Publishing, The Hague, pp 142–167

    Google Scholar 

  • Smirnov NN (1996a) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world, guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic Publishing, Netherlands, pp 1–197

    Google Scholar 

  • Smirnov NN (1996b) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. Guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic Publishing, Netherlands, pp 1–197

    Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers—a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, Oxford, p 383

    Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of Subfossil Cladocera from Centraland Northern Europe. wyd. Towarzystwo Przyjaciół Dolnej Wisły, Świecie, p 1–84

  • Tavşanoğlu UN (2012) Zooplankton adaptation strategies against fish predation in Turkish shallow lakes. PhD Thesis

  • Tavşanoğlu UN, Çakıroğlu Aİ, Erdoğan Ş, Meerhoff M, Jeppesen E, Beklioğlu M (2012) Sediment—not plants—is the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: an experimental approach. Freshw Biol 57:795–802

    Article  Google Scholar 

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173

    Chapter  Google Scholar 

  • ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  • Ustaoğlu MR, Mis DÖ, Aygen C (2012) Observations on zooplankton in some lagoons in Turkey. J Black Sea/Mediterr Environ 18(2):208–222

    Google Scholar 

  • Vandekerkhove J, Declerck SAJ, Jeppesen E, Conde-Porcuna J, Brendonck L, De Meester L (2005) Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142:109–116

    Article  Google Scholar 

  • Vijverberg J (1980) Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshw Biol 10:317–340

    Article  Google Scholar 

  • Williams WD (1987) Salinization of rivers and streams: an important environmental hazard. Ambio 16:180–185

    Google Scholar 

Download references

Acknowledgments

We are grateful to S. L. Amsinck, L. S. Johansson and K. Jensen for help with the identification of cladoceran remains. This study was supported by Middle East Technical University (METU)-BAP programme of Turkey (BAP.07.02.2009-2012), TÜBİTAK-ÇAYDAG (Projects Nos: 105Y332 and 110Y125) and FP-7 REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). AİÇ, ÜNT and EET were also supported by TÜBİTAK (Project Nos.: 105Y332 and 110Y125), TB was supported by TÜBİTAK 2211 Scholarship Programme, AÖ was supported by METU-ÖYP Programme, and TAD’s contribution was supported by CIRCE, funded by the AUFF–AU Ideas program. AİÇ is also thankful to the EU-Erasmus Student Exchange Programme for the fellowship during her stay in Denmark. The authors are grateful to A. M. Poulsen for editing the manuscript. We also want to thank Lisa Doner, Korhan Özkan, Damla Beton, Şeyda Erdoğan, Gizem Bezirci, Nur Filiz, Burcu Yeşilbudak, Seval Özcan, Ceran Şekeryapan, Mengü Türk, Semra Yalçın and Mukadder Arslan for their invaluable support for this work both in the field and in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. İdil Çakıroğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakıroğlu, A.İ., Tavşanoğlu, Ü.N., Levi, E.E. et al. Relatedness between contemporary and subfossil cladoceran assemblages in Turkish lakes. J Paleolimnol 52, 367–383 (2014). https://doi.org/10.1007/s10933-014-9799-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-014-9799-x

Keywords

Navigation