Skip to main content

Advertisement

Log in

Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Ancient lakes, which are important centres of biodiversity and endemism, are threatened by a wide variety of human impacts. To assess environmental impact on ancient Lake Ohrid we have taken short sediment cores from two contrasting site locations, comprising a site of urban pollution and an apparently pristine area. Recent impacts on water quality and ecology were assessed using sediment, geochemical, ostracode, and diatom data derived from analysis of two 210Pb-dated sediment cores spanning the period from 1918 to 2009. According to the index of geoaccumulation, sediments were often moderately contaminated with As. Fe and Ni concentrations often exceeded reported maximum limits above which harmful effects on sediment-dwelling organisms are expected. Productivity in the (pristine) south-eastern part of Lake Ohrid (Sveti Naum) is generally lower than in the north, probably due to the strong influence of spring discharge. Low ostracode and diatom concentrations, low abundance of the epilimnetic diatom Cyclotella ocellata, and low values of TOC and TIC indicate a lower productivity from the early 1920s to the late 1980s. Since the mid 1970s, increased relative abundance of C. ocellata and increasing diatom concentration indicate increasing productivity in the south-eastern part. Rising numbers of ostracode valves and higher TIC and TOC contents in both sediment cores indicate an increase in productivity during the late 1980s. A slight increase in productivity near Sveti Naum continued from the early 1990s until 2009, witnessed by rising TC, TIC, and TOC content and a generally high number of ostracode valves and ostracode diversity. The area near the City of Struga (site of urban pollution) is also characterized by rising TOC and TIC contents and, furthermore, by increasing Cu, Fe, Pb, and Zn concentrations since the early 1990s. The recent reduction in the number of ostracode valves and ostracode diversity is probably caused by a higher heavy metal load into the lake. This suggests that living conditions for the endemic species in Lake Ohrid have become less favourable in the northern part of the lake, which might threaten the unique flora and fauna of Lake Ohrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht C, Wilke T (2008) Ancient Lake Ohrid: biodiversity and evolution. Hydrobiologia 615:103–140

    Article  Google Scholar 

  • Aliaj S, Baldassarre G, Shkupi D (2001) Quaternary subsidence zones in Albania: some case studies. B Eng Geol Environ 59:313–318

    Article  Google Scholar 

  • Alin SR, Cohen AS, Bills R, Gashagaza MM, Michel E, Tiercelin JJ, Martens K, Coveliers P, Mboko SK, West K, Soreghan M, Kimbadi S, Ntakimazi G (1999) Effects of landscape disturbance on animal communities in Lake Tanganyika, East Africa. Conserv Biol 13:1017–1033

    Article  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, London

    Book  Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium, applications to earth, marine and environmental sciences. Clarendon Press, Oxford, pp 731–778

    Google Scholar 

  • Asaeda T, Shinohara R (2012) Japanese lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, New York, pp 415–421

    Chapter  Google Scholar 

  • Avramoski O, Kycyku S, Naumoski T, Panovski D, Puka V, Selfo L, Watzin M (2003) Lake Ohrid: experience and lessons learned brief (Lake Basin Management Initiative). n.d. Web 06 Oct 2012. http://www.ilec.or.jp/eg/lbmi/index.htm

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Bilali I, Musai M, Shemo M (2012) Managing the river “Velgozda-Grasnica” from the different chemical polluters flouted in the Lake Ohrid. Balwois—conference of water observation and information system for decision support, Ohrid

  • Biskaborn BK, Herzschuh U, Bolshiyanov DY, Savelieva LA, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~13300 yr inferred from lake diatoms and sediment-geochemical parameters. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:22–36

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • California Academy of Sciences (2011) Catalogue of diatom names, on-line version. n.d. Web 27 Feb 2013. http://researcharchive.calacademy.org/research/diatoms/names/index.asp

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32:163–175

    Article  Google Scholar 

  • Cheburkin AK, Shotyk W (1996) An energy-dispersive miniprobe multielement analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Fresen J Anal Chem 354:688–691

    Google Scholar 

  • Cohen AS, Bills R, Cocquyt CZ, Caljon AG (1993) The impact of sediment pollution on biodiversity in Lake Tanganyika. Conserv Biol 7:667–677

    Article  Google Scholar 

  • Dodeva S (2012) Macedonian lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, New York, pp 503–508

    Chapter  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • GeoHive. n.d. Web 10 Nov 2012. http://www.geohive.com/cntry/europe.aspx

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Holtvoeth J, Vogel H, Wagner B, Wolff GA (2010) Lipid biomarkers in Holocene and glacial sediments from ancient Lake Ohrid (Macedonia, Albania). Biogeosciences 7:4607–4640

    Article  Google Scholar 

  • Houk V, Klee R, Tanaka H (2010) Atlas of freshwater centric diatoms, with a brief key and descriptions. Part 3: Stephanodiscaceae A, Cyclotella, Tertiarius, Discostella. Fottea 10 Supplement. Czech Phycological Society, Benátská

  • Jaagumagi R (1993) Development of the Ontario provincial sediment quality guidelines for arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Water resources branch, Ministry of the Environment, Ontario

  • Kostoski G, Albrecht C, Trajanovski S, Wilke T (2010) A freshwater biodiversity hotspot under pressure—assessing threats and identifying conservation needs for ancient Lake Ohrid. Biogeosciences 7:3999–4015

    Article  Google Scholar 

  • Krammer K (2002) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats, volume 3: Cymbella. A.R.G. Gantner Verlag, Ruggell

  • Krammer K, Lange-Bertalot H (1986) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae (vol. 2/1). Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1988) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, Surirellaceae (vol. 2/2). Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1991a) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae (vol. 2/3). Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1991b) Süsswasserflora von Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae (vol. 2/4). Gustav Fischer Verlag, Stuttgart

  • Krebs CJ (1989) Ecological methodology. Harper and Row, New York

    Google Scholar 

  • Lange-Bertalot H (2001) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats, volume 2: Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. A.R.G. Gantner Verlag, Ruggell

  • Levkov Z (2009) Diatoms of Europe. Diatoms of the European inland waters and comparable habitats, volume 5: Amphora sensu lato. A.R.G. Gantner Verlag, Ruggell

  • Levkov Z, Williams DM (2011) Fifteen new diatom (Bacillariophyta) species from Lake Ohrid, Macedonia. Phytotaxa 30:1–41

    Google Scholar 

  • Levkov Z, Krstic S, Metzeltin D, Nakov T (2007) Diatoms of Lakes Prespa and Ohrid (Macedonia). Iconographia Diatomologica 16. A.R.G. Gantner Verlag, Ruggell

  • Löffler H, Schiller E, Kusel E, Kraill H (1998) Lake Prespa, a European natural monument, endangered by irrigation and eutrophication? Hydrobiologia 384:69–74

    Article  Google Scholar 

  • Lokoska L (2012) Microbiological investigation of the water and sediment in the north part of Lake Ohrid, Macedonia. Balwois—conference of water observation and information system for decision support, Ohrid

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Malaj E, Rousseau D, Du Laing G, Lens P (2012) Near-shore distribution of heavy metals in the Albanian part of Lake Ohrid. Environ Monit Assess 184:1823–1839

  • Matter M, Anselmetti FS, Jordanoska B, Wagner B, Wessels M, Wüest A (2010) Carbonate sedimentation and effects of eutrophication observed at the Kališta subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences 7:4715–4747

    Article  Google Scholar 

  • Matzinger A, Veljanoska-Sarafiloska E, Jordanoski M, Naumoski T (2004) Lake Ohrid—a unique ecosystem endangered by eutrophication? Balwois—conference of water observation and information system for decision support, Ohrid

  • Matzinger A, Jordanoski M, Veljanoska-Sarafiloska E, Sturm B, Müller M, Wüest A (2006a) Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid? Hydrobiologia 553:89–109

    Article  Google Scholar 

  • Matzinger A, Spirkovski Z, Patceva S, Wüest A (2006b) Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming. J Gt Lakes Res 32:158–179

    Article  Google Scholar 

  • Matzinger A, Schmid M, Veljanoska-Sarafiloska E, Patceva S, Guseska D, Wagner B, Müller B, Sturm M, Wüest A (2007) Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol Oceanogr 52:338–353

    Article  Google Scholar 

  • Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2., Physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Mikulić F, Pljakić MA (1970) Die Merkmale der kvalitativen distribution der endemischen Candonaarten im Ochridsee. Ekologija 5:101–115

    Google Scholar 

  • Ministry of environment and physical planning. Human activities in the basin. n.d. Web 09 Nov 2012. http://www.moepp.gov.mk/WBStorage/Files/SOER%203%20History,%20socioeconomics.pdf

  • Müller G (1986) Schadstoffe in Sedimenten—Sedimente als Schadstoffe. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 79:107–126

    Google Scholar 

  • Neugebauer T, Vallerien D (2012) Energy-efficient protection of UNESCO natural world heritage—Lake Ohrid, Albania. Wasser Abfall 14:25–29

    Article  Google Scholar 

  • Patceva S, Mitic V, Jordanoski M, Veljanoska-Sarafiloska E (2004) Influence of the main tributaries on the trophic state of Lake Ohrid. Balwois—conference of water observation and information system for decision support, Ohrid

  • Patceva S, Mitic V, Momcula J, Matzinger A, Veljanoska-Sarafiloska E (2006) Trophic state of Lake Prespa. Balwois—conference of water observation and information system for decision support, Ohrid

  • Pérez L, Bugja R, Massaferro J, Steeb P, von Geldern R, Frenzel P, Brenner M, Scharf B, Schwalb A (2010) Post-Columbian environmental history of Lago Petén Itzá, Guatemala. Rev Mex Cienc Geol 27:490–507

    Google Scholar 

  • Popovska C (2011) Tectonic lakes—climatic and anthropogenic impacts. EGU General Assembly, Vienna

    Google Scholar 

  • Popovska C, Bonacci O (2007) Basic data on the hydrology of Lakes Ohrid and Prespa. Hydrol Process 21:658–664

    Article  Google Scholar 

  • Reed JM, Leng MJ, Ryan S, Black S, Altinsaçli S, Griffiths HI (2008) Recent habitat degradation in karstic Lake Uluabat, western Turkey: a coupled limnological-palaeolimnological approach. Biol Conserv 141:2765–2783

    Article  Google Scholar 

  • Reed JM, Cvetkoska A, Levkov Z, Vogel H, Wagner B (2010) The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate. Biogeosciences 7:3083–3094

    Article  Google Scholar 

  • Ryves DB, Juggins S, Fritz SC, Battarbee RW (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr Palaeoclimatol Palaeoecol 172:99–113

    Article  Google Scholar 

  • Salemaa H (1994) Lake Ohrid. Arch Hydrobiol 44:55–64

    Google Scholar 

  • Spirkovski Z, Avramovski O, Kodzoman A (2001) Watershed management in the Lake Ohrid region of Albania and Macedonia. Lakes Reserv Res Manag 6:237–242

    Article  Google Scholar 

  • Stankovič S (1960) The Balkan Lake Ohrid and its living world. Uitgeverij Dr. W. Junk, Den Haag

  • Touchart L (2012) Lake Baikal. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, New York, pp 83–91

    Chapter  Google Scholar 

  • UNESCO ROSTE (2004) Report about the Lake Ohrid watershed region. n.d. Web 24 Oct 2012. http://portal.unesco.org/en/files/24220/11032790451ohrid_prespa_report_august_2004.pdf/ohrid+prespa+report+august+2004.pdf

  • Veljanoska-Sarafiloska E, Jordanoski M, Mitic V, Patceva S (2004) Influence of River Velgoska and Koselska on the trophic state of Lake Ohrid. Balwois—conference of water observation and information system for decision support, Ohrid

  • Vogel H, Wessels M, Albrecht C, Stich HB, Wagner B (2010) Spatial variability of recent sedimentation in Lake Ohrid (Albania/Macedonia)—a complex interplay of natural and anthropogenic factors and their possible impact on biodiversity patterns. Biogeosciences 7:3333–3342

    Article  Google Scholar 

  • Wagner B, Lotter A, Nowaczyk N, Reed J, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41:407–430

    Article  Google Scholar 

  • Watzin MC (2003) Lake Ohrid and its watershed: our lake, our future. A state of the environment report. Lake Ohrid conservation project, Tirana, Albania and Ohrid

Download references

Acknowledgments

We thank Nicole Mantke (Institut für Geologie und Mineralogie, Universität zu Köln, Germany) and Melanie Leng (NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham, United Kingdom) for carrying out geochemical analyses. Furthermore, we want to thank Meike List for ostracode analysis, Janine Dannecker for quantifying major and trace elements (Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Germany) and Burkhard Scharf (Bremen, Germany) for the support with ostracode taxonomy. We owe a debt of gratitude to Goce Kostoski, Sasho Trajanovski, and Zoran Brdarovski (Hydrobiological Institute, Ohrid, Macedonia) for the support and commitment during the field campaign. Funding was provided by the Deutsche Forschungsgemeinschaft (Schw 671/11) and the authors would like to thank the two anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Lorenschat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenschat, J., Zhang, X., Anselmetti, F.S. et al. Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach. J Paleolimnol 52, 139–154 (2014). https://doi.org/10.1007/s10933-014-9783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-014-9783-5

Keywords

Navigation