Skip to main content
Log in

Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE Jr (2002) Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470:219–234

    Article  Google Scholar 

  • Baker JR, Peck DV, Sutton DW (eds) (1997) Environmental monitoring and assessment program surface waters: field operations manual for lakes. EPA/620/R-97/001. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Birks HH (2000) Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early Holocene. J Paleolimnol 23:7–19

    Article  Google Scholar 

  • Brenner M, Hodell D, Leyden B, Curtis J, Kenney W, Gu B, Newman J (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte dominated lake. J Paleolimnol 35:129–148

    Article  Google Scholar 

  • Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biol 46:253–267

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth

    Google Scholar 

  • Davidson TA (2006) Zooplankton ecology and palaeoecology in nutrient enriched shallow lakes. PhD thesis, University College of London, 191 pp

  • Davidson TA, Sayer CD, Bennion H, David C, Rose N, Wade MP (2005) A year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol 50:1671–1686

    Article  Google Scholar 

  • Denys L (2006) Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, Lower Belgium): inference models for historical sediment assemblages. J Paleolimnol 35:763–787

    Article  Google Scholar 

  • Dixit SS, Smol JP, Charles DF, Hughes RM, Paulsen SG, Collins GB (1999) Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquat Sci 56:131–152

    Article  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Egertson JC, Kopaska JA, Downing JA (2004) A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524:145–156

    Article  Google Scholar 

  • Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) (1998) The structuring role of submerged macrophytes in lakes. Ecological studies, Vol. 131. Springer, New York, 423 pp

    Google Scholar 

  • Larsen DP, Stevens DL, Selle AR, Paulsen SG (1991) Environmental monitoring and assessment program, EMAP-Surface Waters: a northeast lakes pilot. Lake Reservoir Manage 7:1–11

    Article  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecology 86:2200–2211

    Article  Google Scholar 

  • Moss B (1978) The ecological history of a mediaeval man-made lake. Hickling Broad, Norfolk, United Kingdom. Hydrobiologia 60:23–32

    Article  Google Scholar 

  • Odgaard BV, Rasmussen P (2001) The occurrence of egg-cocoons of the leech Piscicola geometra (L.) in recent lake sediments and their relationship with remains of submerged macrophytes. Arch Hydrobiol 152:671–686

    Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 154 pp

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Ogden RW (2000) Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development. Regul Rivers: Res Manage 16:497–512

    Article  Google Scholar 

  • Osborne PE, Tigar BJ (1992) Interpreting bird atlas data using logistic models: an example from Lesotho, Southern Africa. J Appl Ecol 29:55–62

    Article  Google Scholar 

  • RAPPEL (2004) Un portrait alarmant de l’état des lacs et des limitations d’usages reliées aux plantes aquatiques et aux sediments Bilan (1996–2003). 366 pp

  • Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005

    Article  Google Scholar 

  • Reavie ED, Smol JP (1997) Diatom-based model to infer past littoral habitat characteristics in the St. Lawrence River. J Great Lakes Res 23:339–348

    Article  Google Scholar 

  • Reavie ED, Smol JP, Carigan R, Lorrain S (1998) Diatom paleolimnology of two fluvial lakes in the St. Lawrence River: a reconstruction of environmental changes during the last century. J Phycol 34:446–456

    Article  Google Scholar 

  • Sand-Jensen K, Riis T, Vestergaard O, Larsen SE (2000) Macrophyte decline in Danish lakes and streams over the past 100 years. J Ecol 88:1030–1040

    Article  Google Scholar 

  • Sayer C, Roberts N, Sadler J, David C, Wade PM (1999) Biodiversity changes in a shallow lake ecosystem: a multi-proxy palaeolimnological analysis. J Biogeogr 26:97–114

    Article  Google Scholar 

  • Scheffer M (1989) Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiol Bull 23:73–83

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London, 357 pp

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  Google Scholar 

  • Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, Hanson MA, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Smol JP (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold Publisher, London, UK. Co-published by Oxford University Press, New York, NY

  • Tan OC, Özesmi U (2006) A generic shallow lake ecosystem model based on collective expert knowledge. Hydrobiologia 563:125–142

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 pp

    Google Scholar 

  • Väliranta MM (2006) Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot 85:224–232

    Article  Google Scholar 

  • van Dam H, Mertens A (1993) Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia 269/270:437–445

    Article  Google Scholar 

  • Waisanen PJ, Bliss NB (2002) Changes in population and agricultural land in conterminous United States counties, 1790 to 1997. Global Biogeochem Cycles 16:1137

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. 3rd ed. Academic Press, San Diego, USA

    Google Scholar 

  • Zhao Y, Sayer CD, Birks HH, Hughes M, Peglar SM (2006) Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake. J Paleolimnol 35:335–350

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Sushil Dixit and John Stoddard for answering our questions about the EMAP-SW dataset and Drs. Yves Prairie and Euan Reavie for stimulating discussions. We would also like to acknowledge Dr. Carl Sayer and an anonymous reviewer for providing comments that improved an original version of this manuscript. This project was funded through grants from the Natural Sciences and Engineering Research Council, le Fonds Quebecois de Recherche sur la Nature et les Technologies and McGill University awarded to I. Gregory-Eaves and a Vineberg graduate scholarship awarded to J. Vermaire. This study is a contribution to the Groupe de Recherche Interuniversitaire en Limnologie. Although some data described in this article have been funded wholly or in part by the U.S. Environmental Protection Agency through its EMAP Surface Waters Program, it has not been subjected to Agency review, and therefore does not necessarily reflect the views of the Agency and no official endorsement of the conclusions should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse C. Vermaire.

Appendix 1

Appendix 1

Common diatom taxa and their maximum and mean relative abundance (%) along with number of occurrences in lakes with extensive (Ext, >40% cover) and sparse (Spar, <10% cover) macrophyte cover. Correspondence analysis axis 2 species scores (CA axis 2) and the effective number of occurrences of each taxa for all sites (N2) are also shown

#

Taxon name

Maximum occurrences

Mean occurrence

Number of occurrences

CA axis 2

N2

Ext

Spar

Ext

Spar

Ext

Spar

1

Achnanthes austriaca var. helvetica

0.6

2.9

0.1

0.1

9

9

−0.9

8.6

2

Achnanthes bicapitata

0.6

1.8

0.0

0.1

6

19

−1.0

12.8

3

Achnanthes detha

6.3

4.9

0.7

0.7

33

72

−0.6

49.8

4

Achnanthes didyma

0.4

1.2

0.0

0.1

5

22

−1.8

15.5

5

Achnanthes exigua

6.3

1.6

0.3

0.1

14

14

2.0

13.9

6

Achnanthes flexella

0.5

2.1

0.0

0.1

7

21

0.3

14.1

7

Achnanthes helvetica

1.6

2.6

0.2

0.2

18

42

−0.5

32.0

8

Achnanthes lanceolata

17.2

7.8

0.6

0.2

23

20

1.5

17.7

9

Achnanthes lanceolata var. rostrata

7.5

1.2

0.2

0.1

10

11

2.1

7.0

10

Achnanthes levanderi

1.0

1.4

0.0

0.1

3

11

−2.4

6.3

11

Achnanthes linearis

3.8

4.5

0.6

0.3

30

41

0.2

38.5

12

Achnanthes marginulata

1.7

2.7

0.2

0.2

18

45

−0.7

33.9

13

Achnanthes microcephala

2.6

1.2

0.1

0.0

5

7

0.8

5.7

14

Achnanthes minutissima

56.0

44.7

11.3

5.7

43

87

0.4

62.7

15

Achnanthes suchlandtii

1.8

1.5

0.1

0.1

7

22

−1.1

18.7

16

Actinella punctata

2.1

3.7

0.2

0.1

9

7

1.0

9.2

17

Amphipleura pellucida

1.2

0.4

0.1

0.0

12

8

1.9

15.4

18

Amphora ovalis

15.2

3.0

0.7

0.2

27

31

1.9

21.8

19

Amphora perpusilla

6.8

5.2

0.3

0.1

11

8

2.5

8.8

20

Anomoeoneis serians

1.9

0.7

0.1

0.0

6

7

0.6

7.4

21

Anomoeoneis serians var. brachysira

6.1

12.6

0.6

0.5

21

40

0.1

27.4

22

Anomoeoneis vitrea

11.2

16.9

1.9

1.3

34

69

0.3

45.1

23

Asterionella formosa

50.4

55.7

1.9

6.7

15

75

−1.3

41.5

24

Asterionella ralfsii var. americana >45 μm

25.9

67.3

1.0

2.6

11

40

−1.0

15.5

25

Aulacoseira ambigua

33.1

44.3

3.3

5.1

34

74

−0.7

54.0

26

Aulacoseira crassipunctata

24.0

15.6

1.1

0.2

5

1

1.6

2.5

27

Aulacoseira distans

21.4

10.3

1.4

0.8

20

46

−0.7

30.4

28

Aulacoseira distans var. humilis

3.4

3.3

0.1

0.1

5

8

−0.5

7.2

29

Aulacoseira distans var. nivalis

1.5

2.6

0.1

0.1

3

6

−2.0

5.2

30

Aulacoseira distans var. nivaloides

6.9

16.4

0.6

0.5

16

31

−1.1

18.9

31

Aulacoseira distans var. tenella

10.3

30.8

1.1

3.1

19

59

−1.5

32.0

32

Aulacoseira granulata

1.8

1.4

0.1

0.1

5

8

−0.6

10.1

33

Aulacoseira italica subsp. subarctica

16.4

13.4

0.4

0.6

4

31

−2.2

15.5

34

Aulacoseira italica subsp. subarctica f. tenussima

0.6

9.5

0.0

0.3

1

6

−2.0

4.7

35

Aulacoseira italica var. valida

2.3

0.4

0.1

0.0

4

7

0.6

5.4

36

Aulacoseira lirata

16.3

17.6

1.1

1.4

21

54

−1.2

34.0

37

Aulacoseira lirata var. lacustris

10.8

1.2

0.4

0.0

7

4

1.0

4.6

38

Aulacoseira nygaardii

7.1

9.5

0.6

0.2

18

14

0.4

19.4

39

Aulacoseira perglabra var. floriniae

3.4

3.0

0.2

0.1

11

14

−0.5

15.5

40

Caloneis ventricosa

0.2

1.9

0.0

0.1

3

14

−0.3

8.8

41

Cocconeis placentula

19.5

9.1

2.2

0.4

31

35

1.0

28.8

42

Cyclotella comta

9.0

24.4

0.5

3.8

17

66

−1.9

34.2

43

Cyclotella meneghiniana

1.2

26.7

0.1

0.6

4

11

0.9

4.8

44

Cyclotella michiganiana

5.2

45.4

0.5

1.1

11

40

−0.9

23.3

45

Cyclotella ocellata

20.6

17.4

0.4

0.7

2

11

−2.5

4.8

46

Cyclotella stelligera

27.5

58.8

3.0

18.2

33

84

−1.3

55.6

47

Cymbella amphicephala var. hercynica

1.7

0.4

0.1

0.0

13

10

0.7

13.9

48

Cymbella cesatii

0.7

1.4

0.1

0.0

10

10

1.6

11.5

49

Cymbella cf. aequalis

2.2

3.8

0.2

0.2

13

21

1.1

15.4

50

Cymbella cf. gaeumannii

1.2

1.4

0.1

0.1

8

15

−0.4

13.8

51

Cymbella cf. schubartii

0.4

1.2

0.0

0.0

6

12

0.2

10.7

52

Cymbella cistula

3.4

1.8

0.1

0.0

8

15

1.8

12.8

53

Cymbella delicatula

2.6

1.2

0.1

0.0

3

4

2.7

4.0

54

Cymbella descripta

1.2

1.0

0.0

0.0

3

9

1.2

6.9

55

Cymbella hebridica

5.0

2.0

0.2

0.1

14

27

0.9

18.6

56

Cymbella lunata

2.0

1.1

0.2

0.1

19

35

0.0

30.3

57

Cymbella microcephala

3.7

4.3

0.4

0.2

25

33

1.2

27.0

58

Cymbella minuta

2.0

2.2

0.3

0.2

31

42

0.7

43.1

59

Cymbella sp. 1 PIRLA

2.8

2.6

0.1

0.1

7

9

0.5

7.0

60

Diploneis marginestriata

4.4

0.6

0.1

0.1

6

21

−0.9

16.1

61

Diploneis ovalis

1.6

0.3

0.1

0.0

6

18

−0.5

11.0

62

Epithemia spp.

0.4

0.6

0.0

0.0

6

4

1.4

6.5

63

Eunotia bidentula

0.8

10.8

0.1

0.2

12

16

0.6

10.9

64

Eunotia carolina var. 1 PIRLA

4.2

6.4

0.2

0.1

11

16

0.4

11.5

65

Eunotia curvata

5.9

2.6

0.6

0.2

28

33

0.4

30.5

66

Eunotia exigua

10.2

3.2

0.4

0.2

17

29

0.4

22.0

67

Eunotia fallax

1.9

2.2

0.1

0.0

4

6

−0.1

3.7

68

Eunotia flexuosa

2.1

14.8

0.4

0.2

28

35

0.3

25.9

69

Eunotia hemicyclus

3.0

1.9

0.2

0.0

8

5

1.0

7.7

70

Eunotia implicata

1.6

0.2

0.1

0.0

6

7

0.3

5.6

71

Eunotia incisa

5.6

3.4

1.1

0.4

36

56

0.2

49.6

72

Eunotia intermedia

0.8

2.1

0.1

0.1

7

12

−0.2

8.9

73

Eunotia lunaris var. attenuata

6.0

1.8

0.5

0.1

24

18

0.7

25.6

74

Eunotia microcephala

0.6

0.4

0.0

0.0

6

1

0.8

3.7

75

Eunotia monodon

1.5

1.4

0.2

0.1

25

20

0.5

25.3

76

Eunotia naegelii

7.6

7.2

0.4

0.2

19

16

0.6

15.9

77

Eunotia pectinalis

1.6

1.9

0.1

0.1

15

24

0.1

20.9

78

Eunotia pectinalis var. minor

1.6

1.9

0.2

0.1

20

18

0.6

23.1

79

Eunotia pectinalis var. ventricosa

9.2

4.8

1.2

0.3

32

40

0.1

32.0

80

Eunotia praerupta

1.0

1.0

0.1

0.1

15

18

0.0

18.9

81

Eunotia rhomboidea

2.2

5.3

0.2

0.2

17

31

0.2

20.9

82

Eunotia serra

0.6

3.4

0.0

0.1

4

7

0.7

5.0

83

Eunotia sp. 2 PIRLA

1.0

0.6

0.1

0.0

6

1

0.9

3.7

84

Eunotia spp.

0.8

2.8

0.1

0.0

7

5

1.1

8.5

85

Eunotia vanheurckii

2.0

1.4

0.2

0.1

17

24

0.3

19.8

86

Eunotia zasuminensis

6.3

3.7

0.3

0.2

7

19

−1.4

13.8

87

Fragilaria brevistriata

21.9

5.1

1.8

0.5

35

45

1.5

31.7

88

Fragilaria brevistriata var. capitata

0.6

1.2

0.0

0.1

5

18

−0.6

13.7

89

Fragilaria capucina var. mesolepta

29.0

3.6

1.1

0.1

6

6

2.2

5.8

90

Fragilaria cf. oldenburgiana

1.7

0.8

0.1

0.1

9

23

0.0

17.3

91

Fragilaria constricta

0.7

1.6

0.1

0.1

12

16

0.9

15.8

92

Fragilaria construens

30.9

31.3

2.0

1.0

18

27

1.9

15.3

93

Fragilaria construens var. binodis

4.4

1.0

0.1

0.1

9

20

−0.5

17.5

94

Fragilaria construens var. venter

10.7

15.6

0.3

0.2

7

2

4.4

4.3

95

Fragilaria crotonensis

29.7

34.3

2.2

2.8

23

55

−0.1

30.1

96

Fragilaria hungarica var. tumida

1.7

11.6

0.1

0.2

7

9

0.7

10.8

97

Fragilaria pinnata

58.7

34.7

7.1

2.3

40

68

0.8

46.8

98

Fragilaria pinnata var. acuminata

13.3

6.8

0.7

0.3

24

39

0.5

26.4

99

Fragilaria pinnata var. intercedens

6.9

0.6

0.1

0.0

1

3

2.6

1.9

100

Fragilaria pinnata var. lancettula

8.1

1.8

0.3

0.1

9

11

1.3

8.7

101

Fragilaria sp. 2 PIRLA

28.1

1.1

0.7

0.0

6

7

3.4

3.2

102

Fragilaria vaucheriae

2.9

8.7

0.4

0.4

28

46

0.1

34.5

103

Fragilaria virescens

1.1

3.0

0.1

0.1

12

10

0.3

10.5

104

Fragilaria virescens var. exigua

5.9

11.4

0.7

0.4

26

42

−0.1

33.3

105

Frustulia cf. magaliesmontana

16.3

5.3

0.6

0.2

9

10

0.9

7.3

106

Frustulia rhomboides

4.4

1.7

0.3

0.2

21

30

0.1

23.7

107

Frustulia rhomboides var. saxonica

15.1

9.7

1.7

0.7

28

51

0.2

32.1

108

Gomphonema acuminatum

1.2

2.0

0.1

0.1

14

27

0.2

23.8

109

Gomphonema angustatum

4.4

4.7

0.6

0.3

36

50

0.5

47.2

110

Gomphonema gracile

4.2

0.8

0.3

0.1

19

22

0.9

19.6

111

Gomphonema spp.

2.0

0.7

0.1

0.0

5

9

0.1

7.3

112

Gyrosigma acuminatum

24.9

0.4

0.6

0.0

9

14

1.9

5.2

113

Meridion circulare var. constrictum

1.2

2.0

0.1

0.1

10

12

0.1

15.1

114

Navicula arvensis

2.1

3.0

0.1

0.1

10

20

−0.8

16.2

115

Navicula bacillum

8.0

1.5

0.2

0.0

8

4

2.0

6.1

116

Navicula bremensis

0.8

1.5

0.1

0.0

10

9

0.5

10.6

117

Navicula capitata

0.8

0.8

0.1

0.0

9

7

1.7

10.1

118

Navicula cf. heimansii

8.3

16.7

0.7

0.5

17

24

0.5

19.1

119

Navicula cryptocephala

14.0

4.2

0.7

0.1

13

19

1.6

14.7

120

Navicula disjuncta

0.5

1.7

0.1

0.1

14

21

0.4

20.9

121

Navicula globosa

3.4

1.5

0.1

0.0

6

3

3.7

5.9

122

Navicula gysingensis

2.1

0.8

0.1

0.0

5

12

−0.6

8.3

123

Navicula halophila

5.6

0.8

0.1

0.0

6

6

2.6

7.3

124

Navicula laevissima

1.4

0.8

0.0

0.0

3

7

0.4

7.5

125

Navicula mediocris

1.8

4.0

0.1

0.2

11

21

0.3

12.2

126

Navicula minima

3.6

2.2

0.5

0.4

26

46

−0.4

38.8

127

Navicula modica

10.9

5.7

0.8

0.3

25

28

1.5

24.8

128

Navicula mutica

1.0

0.4

0.0

0.0

8

3

0.6

4.9

129

Navicula pupula

2.4

3.6

0.6

0.5

34

61

0.4

54.1

130

Navicula pupula var. rectangularis

0.6

3.4

0.1

0.1

7

11

1.2

8.4

131

Navicula radiosa

2.6

4.2

0.2

0.1

17

19

1.8

19.4

132

Navicula radiosa var. parva

7.0

4.9

0.7

0.4

27

52

0.9

36.5

133

Navicula radiosa var. tenella

7.5

3.0

0.5

0.1

18

27

1.8

22.1

134

Navicula rhynchocephala

3.8

7.2

0.3

0.2

15

25

0.8

19.9

135

Navicula seminuloides

3.6

8.1

0.5

0.5

19

39

0.2

27.5

136

Navicula seminulum

3.0

3.7

0.4

0.2

25

34

0.6

30.8

137

Navicula sp. 2 PIRLA

0.2

0.2

0.0

0.0

2

2

4.4

2.0

138

Navicula sp. 25 PIRLA

1.1

0.9

0.0

0.0

2

8

−1.8

6.5

139

Navicula spp.

7.6

7.0

1.4

0.8

27

53

0.8

45.7

140

Navicula submolesta

3.6

1.0

0.2

0.1

11

20

0.2

16.9

141

Navicula subtilissima

6.0

6.2

0.5

0.3

15

20

0.7

15.7

142

Navicula tenuicephala

2.7

2.9

0.1

0.1

3

6

1.1

4.6

143

Navicula trivialis

2.2

1.2

0.1

0.0

4

3

1.5

5.1

144

Navicula vitiosa

6.0

11.4

0.7

0.8

22

51

−0.4

33.8

145

Navicula vulpina

0.2

5.2

0.0

0.1

1

6

1.8

4.0

146

Neidium affine

1.5

1.3

0.2

0.1

25

26

0.8

30.7

147

Neidium iridis

1.8

1.5

0.2

0.1

17

25

0.4

25.8

148

Neidium iridis var. amphigomphus

2.5

1.0

0.2

0.1

21

25

0.4

23.3

149

Nitzschia acicularis

2.2

2.3

0.1

0.0

8

8

1.1

10.3

150

Nitzschia amphibia

1.4

2.0

0.0

0.1

3

8

1.9

6.8

151

Nitzschia denticula

4.2

3.0

0.2

0.1

8

6

2.4

8.3

152

Nitzschia dissipata

5.0

2.5

0.2

0.1

16

38

0.4

23.4

153

Nitzschia fonticola

1.6

12.1

0.1

0.4

13

30

0.9

16.9

154

Nitzschia gracilis

6.2

4.4

1.0

0.5

31

60

0.2

45.8

155

Nitzschia palea

3.6

9.2

0.2

0.3

15

37

0.5

26.5

156

Nitzschia perminuta

0.7

1.2

0.1

0.0

6

10

−0.2

7.4

157

Nitzschia spp.

4.0

8.9

0.5

0.3

19

23

1.5

21.2

158

Pinnularia abaujensis

1.1

0.8

0.1

0.1

11

23

0.0

18.0

159

Pinnularia abaujensis var. 2 PIRLA

16.3

5.5

0.4

0.2

10

17

0.8

9.2

160

Pinnularia abaujensis var. rostrata

1.4

2.8

0.1

0.0

6

8

0.8

7.2

161

Pinnularia biceps

5.9

5.0

0.3

0.3

19

37

0.5

27.2

162

Pinnularia braunii

4.4

3.6

0.1

0.1

11

16

0.5

12.2

163

Pinnularia hilseana

0.2

1.2

0.0

0.0

2

7

−0.2

4.4

164

Pinnularia maior

0.2

1.5

0.0

0.0

3

6

0.5

3.3

165

Pinnularia mesolepta

0.6

4.2

0.0

0.1

7

11

1.3

11.2

166

Pinnularia microstauron

0.6

1.9

0.1

0.0

10

11

0.3

11.9

167

Pinnularia pogoii

3.0

1.3

0.2

0.0

9

5

0.6

6.3

168

Pinnularia sp. 11 PIRLA

4.1

1.9

0.1

0.0

3

6

1.6

3.8

169

Pinnularia subcapitata

2.3

2.3

0.1

0.1

12

15

0.9

12.6

170

Pinnularia viridis

1.3

0.8

0.1

0.1

17

21

0.4

26.3

171

Stauroneis anceps

0.4

0.9

0.0

0.1

11

20

0.5

16.7

172

Stauroneis anceps f. gracilis

0.6

3.1

0.1

0.1

19

34

−0.6

34.1

173

Stauroneis nobilis var. baconiana

0.6

4.6

0.0

0.1

7

7

−0.2

10.3

174

Stauroneis phoenicenteron

0.8

1.9

0.2

0.2

24

43

0.2

36.7

175

Stenopterobia intermedia

1.3

1.5

0.2

0.1

22

32

−0.2

32.6

176

Stephanodiscus hantzschii

14.7

54.4

0.4

1.2

5

5

0.2

4.2

177

Stephanodiscus niagarae

6.1

3.6

0.2

0.2

3

11

−1.2

8.9

178

Surirella delicatissima

3.5

2.5

0.3

0.1

16

25

0.3

18.1

179

Surirella linearis

13.9

0.5

0.4

0.1

14

23

1.0

11.8

180

Surirella sp. 2 PIRLA

0.6

8.3

0.0

0.1

3

4

−1.5

2.7

181

Synedra acus

1.3

1.3

0.1

0.0

4

8

0.2

6.9

182

Synedra acus var. angustissima

1.4

2.0

0.1

0.1

6

12

0.1

9.6

183

Synedra delicatissima

8.6

6.4

0.3

0.3

11

20

−0.6

12.0

184

Synedra famelica

1.8

30.2

0.2

0.5

17

33

−0.5

15.3

185

Synedra filiformis var. exilis

1.4

2.4

0.1

0.1

7

9

−1.5

7.8

186

Synedra parasitica

1.0

4.4

0.1

0.1

14

14

1.3

14.5

187

Synedra pulchella

6.8

5.0

0.2

0.1

7

11

1.4

8.0

188

Synedra rumpens

2.4

2.6

0.1

0.1

6

18

−0.3

15.6

189

Synedra rumpens var. familiaris

9.7

5.2

0.5

0.3

19

30

0.3

26.2

190

Synedra spp.

3.5

3.0

0.1

0.1

2

6

−0.1

6.3

191

Synedra subrhombica

1.6

2.6

0.1

0.1

7

12

0.0

9.6

192

Synedra ulna

2.4

5.1

0.3

0.2

27

43

0.1

37.8

193

Tabellaria fenestrata

2.6

2.1

0.2

0.1

16

28

−0.3

24.0

194

Tabellaria flocculosa strain III

11.0

5.1

0.8

0.6

26

66

−0.6

44.8

195

Tabellaria flocculosa strain IIIp

19.5

42.9

1.2

7.9

27

74

−1.8

39.6

196

Tabellaria flocculosa strain IV

2.9

4.3

0.7

0.4

29

50

−0.2

41.0

197

Tabellaria flocculosa var. linearis

6.4

1.5

0.5

0.2

29

48

−0.5

37.8

198

Tabellaria quadriseptata

29.8

17.0

1.7

0.3

12

15

1.1

10.8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermaire, J.C., Gregory-Eaves, I. Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages. J Paleolimnol 39, 477–490 (2008). https://doi.org/10.1007/s10933-007-9125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9125-y

Keywords

Navigation