Skip to main content

Advertisement

Log in

Trehalose and Magnesium Chloride Exert a Common Anti-amyloidogenic Effect Towards Hen Egg White Lysozyme

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Many degenerative disorder such as Parkinsons, Alzheimers, Huntingtons disease, etc are caused due to the deposition of amyloid fibrils, formed due to the ordered aggregation of misfolded/unfolded proteins. Misfolded or unfolded proteins aggregate mostly through hydrophobic interactions which are unexposed in native state, but become exposed upon unfolding. To counteract amyloid related diseases, inhibition of the protein self assembly into fibril is a potential therapeutic strategy. The study aims at investigating the effect of selected compounds, namely trehalose and magnesium chloride hexahydrate towards inhibition and disaggregation of amyloid fibrils using Hen Egg White Lysozyme as a model. We further attempted to understand the mechanism of action with the help of various biophysical, microscopic as well as computational studies. A common mechanism of action was identified where the selected compounds exert their anti-amyloidogenic effects by altering HEWL conformations characterized by reduction in the beta sheet content and decrease in exposed hydrophobic surfaces. The altered conformation seems to have lesser amyloidogenic propensity leading to inhibition as well as disaggregation of amyloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANS:

1-Anilinonaphthalene-8-sulphonic acid

BSA:

Bovine serum albumin

CD:

Circular dichroism

DDI:

Distilled deionised

HEWL:

Hen egg white lysozyme

PDB:

Protein data bank

PTA:

Phosphotungstic acid

TEM:

Transmission electron microscope

ThT:

Thioflavin T

References

  1. Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498:204–207

    Article  CAS  Google Scholar 

  2. Frare E, de Laureto PP, Zurdo J, Dobson CM, Fontana A (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340:1153–1165

    Article  CAS  Google Scholar 

  3. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  Google Scholar 

  4. Sgarbossa A (2012) Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int J Mol Sci 13:17121–17137

    Article  CAS  Google Scholar 

  5. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Boil 8:101–106

    Article  CAS  Google Scholar 

  6. Avdeev MV, Aksenov VL, Gazova Z, Almasy L, Petrenko VI, Gojzewski H, Feokstystov AV, Siposova K, Antosova A, Timko M, Kopcansky P (2013) On the determination of the helical structure parameters of amyloid protofilaments by small-angle neutron scattering and atomic force microscopy. J Appl Cryst 46:224–233

    Article  CAS  Google Scholar 

  7. Petrenko VL, Avdeev MV, Garamus VM, Kubovcikova M, Gazova Z, Siposova K, Bulavin LA, Almasy L, Aksenov VL, Kopcansky P (2014) Structure of amyloid aggregates of lysozyme from small-angle X-ray scattering data. Phys Solid State 56:129–133

    Article  CAS  Google Scholar 

  8. Goldsbury C, Baxa U, Simon MN, Steven AC, Engel A, Wall JS, Aebi U, Muller SA (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173:1–13

    Article  CAS  Google Scholar 

  9. Kisilevsky R (2000) Review: amyloidogenesis—unquestioned answers and unanswered questions. J Struct Biol 130:99–108

    Article  CAS  Google Scholar 

  10. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  CAS  Google Scholar 

  11. Wolfe KJ, Cyr DM (2011) Amyloid in neurodegenerative diseases: friend or foe?. Semin Cell Dev Biol 22:476–481

    Article  CAS  Google Scholar 

  12. Shiraki K, Kudou M, Aso Y, Takagi M (2003) Dissolution of protein aggregation by small amine compounds. Sci Technol Adv Mater 4:55–59

    Article  CAS  Google Scholar 

  13. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1–8

    Article  CAS  Google Scholar 

  14. Ishibashi M, Tsumoto K, Tokunaga M, Ejima D, Kita Y, Arakawa T (2005) Is arginine a protein-denaturant?. Protein Expres Purify 42:1–6

    Article  CAS  Google Scholar 

  15. Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, Mann A, Ganguli M, Verma AK, Bhat R, Chandrayan SK, Ahmed S, Sharma S, Kaur P, Singh TP, Srinivasan A (2007) Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS ONE 2:e1176

    Article  Google Scholar 

  16. Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103:13357–13361

    Article  CAS  Google Scholar 

  17. Hamada H, Arakawa T, Shiraki K (2009) Effect of additives on protein aggregation. Curr Pharm Biotechnol 10:400–407

    Article  CAS  Google Scholar 

  18. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  Google Scholar 

  19. Vieira MN, Figueroa-Villar JD, Meirelles MNL, Ferreira ST, De Felice FG (2006) Small molecule inhibitors of lysozyme amyloid aggregation. Cell Biochem Biophys 44:549–553

    Article  CAS  Google Scholar 

  20. He J, Xing YF, Huang B, Zhang YZ, Zeng CM (2009) Tea catechins induce the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates. J Agr Food Chem 57:11391–11396

    Article  CAS  Google Scholar 

  21. Wang SSS, Liu KN, Lee WH (2009) Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys Chem 144:78–87

    Article  CAS  Google Scholar 

  22. Gazova Z, Siposova K, Kurin E, Mucaji P, Nagy M (2013) Amyloid aggregation of lysozyme: the synergy study of red wine polyphenols. Proteins 81:994–1004

    Article  CAS  Google Scholar 

  23. He J, Wang Y, Chang AK, Xu L, Wang N, Chong X, Li H, Zhang B, Jones GW, Song Y (2014) Myricetin prevents fibrillogenesis of hen egg white lysozyme. J Agr Food Chem 62:9442–9449

    Article  CAS  Google Scholar 

  24. Borana MS, Mishra P, Pissurlenkar RRS, Hosur RV, Ahmad B (2014) Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. BBA-Proteins Proteom 1844:670–680

    Article  CAS  Google Scholar 

  25. Singha Roy A, Utreja J, Badhei S (2015) Characterization of the binding of fisetin and morin with chicken egg lysozyme using spectroscopic and molecular docking methods. J Incl Phenom Macrocycl Chem 81:385–394

    Article  CAS  Google Scholar 

  26. Liu KN, Lai CM, Lee YT, Wang SN, Chen RPY, Jan JS, Liu HS, Wang SSS (2012) Curcumin’s pre-incubation temperature affects its inhibitory potency toward amyloid fibrillation and fibril-induced cytotoxicity of lysozyme. BBA-GEN Subj 1820:1774–1786

    Article  CAS  Google Scholar 

  27. Ueda T, Nagata M, Imoto T (2001) Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose. J Biochem 130:491–496

    Article  CAS  Google Scholar 

  28. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238

    Article  CAS  Google Scholar 

  29. Ghosh S, Pandey NK, Dasgupta S (2013) (−)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int J Biol Macromol 54:90–98

    Article  CAS  Google Scholar 

  30. Lee C (2010) 1-Anilinonaphthalene-8-sulfonate (ans); a versatile fluorescent probe from protein folding study to drug design. BioWave 12:1–12

    Google Scholar 

  31. McCubbin WD, Kay CM, Narindrasorasak S, Kisilevsky R (1988) Circular-dichroism studies on two murine serum amyloid A proteins. Biochem J 256:775–783

    Article  CAS  Google Scholar 

  32. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. BBA-Mol Basis Dis 1502:16–30

    Article  CAS  Google Scholar 

  33. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332

    Article  CAS  Google Scholar 

  34. Norris R, Casey F, FitzGerald RJ, Shields D, Mooney C (2012) Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chem 133:1349–1354

    Article  CAS  Google Scholar 

  35. Sharma S, Pathak N, Chattopadhyay K (2013) Osmolyte induced stabilization of protein molecules: a brief review. J Proteins Proteom 3:129–139

    Google Scholar 

  36. Kopcansky P, Siposova K, Melnikova L, Bednarikova Z, Timko M, Mitroova Z, Antosova A, Garamus VM, Petrenko VI, Avdeev MV, Gazova Z (2015) Destroying activity of magnetoferritin on lysozyme amyloid fibrils. J Magn Magn Mater 377:267–271

    Article  CAS  Google Scholar 

  37. Siposova K, Kubovcikova M, Bednarikova Z, Koneracka M, Zavisova V, Antosova A, Kopcansky P, Daxnerova Z, Gazova Z (2012) Depolymerization of insulin amyloid fibrils by albumin-modified magnetic fluid. Nanotechnology 23:055101

    Article  Google Scholar 

  38. Linse S, Cabaleiro-Lago C, Xue W, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104: 8691–8696

    Article  CAS  Google Scholar 

  39. Rocha S, Thunemann AF, Pereira MC, Coelho M, Mohwald H, Brezesinski G (2008) Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 137:35–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the infrastructural facilities at NIT Rourkela. The fellowship provided to VK from DBT is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Chemical compounds studied in this article—Trehalose (PubChem CID:7427); Magnesium chloride hexahydrate (PubChem CID:24644)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Kolli, V. & Sarkar, N. Trehalose and Magnesium Chloride Exert a Common Anti-amyloidogenic Effect Towards Hen Egg White Lysozyme. Protein J 36, 138–146 (2017). https://doi.org/10.1007/s10930-017-9705-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9705-2

Keywords

Navigation