Skip to main content

Advertisement

Log in

Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

DAPI:

4′,6-Diamidino-2-phenylindole

DIGE:

Differential gel electrophoresis

DMEM:

Dulbecco’s modified eagle medium

IP:

Immunoprecipitation

PP2A:

Protein phosphatase 2A

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

siRNA:

Small interfering RNA

References

  1. Chung H, Lee H, Lamoke F, Hrushesky WJM, Wood PA, Jahng WJ (2009) Neuroprotective role of erythropoietin by antiapoptosis in the retina. J Neurosci Res 87:2365–2374

    Article  CAS  Google Scholar 

  2. Arnouk H, Lee H, Zhang R, Chung H, Hunt RC, Jahng WJ (2011) Early biosignature of oxidative stress in the retinal pigment epithelium. J Proteom 74:254–261

    Article  CAS  Google Scholar 

  3. Zhang R, Hrushesky WJM, Wood PA, Lee SH, Hunt RC, Jahng WJ (2010) Melatonin reprogrammes proteomic profile in light-exposed retina in vivo. Int J Biol Macromol 47:255–260

    Article  CAS  Google Scholar 

  4. Sripathi SR, He W, Atkinson CL, Smith JJ, Liu Z, Elledge BM, Jahng WJ (2011) Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 50:8342–8351

    Article  CAS  Google Scholar 

  5. Lee H, Chung H, Lee SH, Jahng WJ (2011) Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol 48:194–201

    Article  CAS  Google Scholar 

  6. Sripathi SR, He W, Um JY, Moser T, Dehnbostel S, Kindt K, Goldman J, Frost MC, Jahng WJ (2012) Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. Adv Biosci Biotechnol 03:1167–1178

    Article  CAS  Google Scholar 

  7. Sripathi SR, Sylvester O, He W, Moser T, Um J-Y, Lamoke F, Ramakrishna W, Bernstein PS, Bartoli M, Jahng WJ (2016) Prohibitin as the molecular binding switch in the retinal pigment epithelium. Protein J 35:1–16

    Article  CAS  Google Scholar 

  8. Rafelski SM (2013) Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71

    Article  Google Scholar 

  9. Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998

    Article  CAS  Google Scholar 

  10. Cusick ME, Klitgord N, Vidal M, Hill DE (2005) Interactome: gateway into systems biology. Hum Mol Genet 14:R171–R181

    Article  CAS  Google Scholar 

  11. Zhu B, Zhai J, Zhu H, Kyprianou N (2010) Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 70:17–26

    Article  CAS  Google Scholar 

  12. Dong P, Jiang L, Liu J, Wu Z, Guo S, Zhang Z, Zhou F, Liu Z (2013) Induction of paclitaxel resistance by ERα mediated prohibitin mitochondrial-nuclear shuttling. PLoS One 8:e83519

    Article  Google Scholar 

  13. Sievers C, Billig G, Gottschalk K, Rudel T (2010) Prohibitins are required for cancer cell proliferation and adhesion. PLoS One 5:e12735

    Article  Google Scholar 

  14. Zhu B, Fukada K, Zhu H, Kyprianou N (2006) Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 66:8640–8647

    Article  CAS  Google Scholar 

  15. Gamble SC, Odontiadis M, Waxman J, Westbrook JA, Dunn MJ, Wait R, Lam EW-F, Bevan CL (2004) Androgens target prohibitin to regulate proliferation of prostate cancer cells. Oncogene 23:2996–3004

    Article  CAS  Google Scholar 

  16. Dart DA, Spencer-Dene B, Gamble SC, Waxman J, Bevan CL (2009) Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocr Relat Cancer 16:1157–1169

    Article  CAS  Google Scholar 

  17. Liu T, Tang H, Lang Y, Liu M, Li X (2009) MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 273:233–242

    Article  CAS  Google Scholar 

  18. Vessal M, Mishra S, Moulik S, Murphy LJ (2006) Prohibitin attenuates insulin-stimulated glucose and fatty acid oxidation in adipose tissue by inhibition of pyruvate carboxylase. FEBS J 273:568–576

    Article  CAS  Google Scholar 

  19. Vilalta PM, Zhang L, Hamm-Alvarez SF (1998) A novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments. J Cell Sci 111(Pt 1):1841–1852

    CAS  Google Scholar 

  20. Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS (2008) Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 68:5678–5688

    Article  CAS  Google Scholar 

  21. Lahat G, Zhu Q-S, Huang K-L, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D (2010) Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5:e10105

    Article  Google Scholar 

  22. Minin AA, Moldaver MV (2008) Intermediate vimentin filaments and their role in intracellular organelle distribution. Biochemistry (Mosc) 73:1453–1466

    Article  CAS  Google Scholar 

  23. Esue O, Carson AA, Tseng Y, Wirtz D (2006) A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem 281:30393–30399

    Article  CAS  Google Scholar 

  24. Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ (1999) Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 10:1997–2015

    Article  CAS  Google Scholar 

  25. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    Article  CAS  Google Scholar 

  26. Malisan F, Testi R (2003) Mitochondrial lipids as apoptosis regulators. Curr Med Chem 10:1573–1580

    Article  CAS  Google Scholar 

  27. Shigenaga MK, Hagen TM, Ames BN (1994) Review Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Article  CAS  Google Scholar 

  28. Choi S-Y, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597–606

    Article  CAS  Google Scholar 

  29. Mitchell TW, Buffenstein R, Hulbert AJ (2007) Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol 42:1053–1062

    Article  CAS  Google Scholar 

  30. Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675

    Article  CAS  Google Scholar 

  31. Sukhorukov VM, Meyer-Hermann M (2015) Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton. Sci Rep 5:13924

    Article  Google Scholar 

  32. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Article  CAS  Google Scholar 

  33. Lee H, Arnouk H, Sripathi S, Chen P, Zhang R, Bartoli M, Hunt RC, Hrushesky WJM, Chung H, Lee SH, Jahng WJ (2010) Prohibitin as an oxidative stress biomarker in the eye. Int J Biol Macromol 47:685–690

    Article  CAS  Google Scholar 

  34. Rintoul GL, Reynolds IJ (2010) Mitochondrial trafficking and morphology in neuronal injury. Biochim et Biophys Acta Mol Basis Dis 1802:143–150

    Article  CAS  Google Scholar 

  35. Sheng Z-H (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204:1087–1098

    Article  CAS  Google Scholar 

  36. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5:a011304

    Article  Google Scholar 

  37. Chang DTW, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045

    Article  CAS  Google Scholar 

  38. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen R-F, Witzmann FA, Harris RA, Balaban RS (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–2536

    Article  CAS  Google Scholar 

  39. Schlager MA, Hoogenraad CC (2009) Basic mechanisms for recognition and transport of synaptic cargos. Mol Brain 2:25

    Article  Google Scholar 

  40. Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21:8388–8396

    Article  CAS  Google Scholar 

  41. Thuaud F, Ribeiro N, Nebigil CG, Désaubry L (2013) Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 20:316–331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Harold J. Sheedlo (University of North Texas Health Science Center) for providing HRP cells. We thank Dr. Cameron Atkinson, Trevor Moser, Hyunju Lee, Dr. Hilal Arnouk, Dr. Ruonan Zhang, and Alex Keim for their excellent technical assistance. This study was supported by the Century II Equipment Fund, Research Excellence Fund from Michigan Technological University, Equipment Fund from NSF, Research and Teaching assistantship from American University of Nigeria. This work was supported in part by an unrestricted grant from Research to Prevent Blindness to the University of Utah Department of Ophthalmology and Visual Sciences. The authors thank Dr. Tristan Purvis for his critical reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jin Jahng.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Decreased mitochondria and prohibitin translocalization under oxygen imbalance conditions. Proteins in RPE cells treated by H2O2 (100 μM) were detected by immunocytochemistry. MitoTracker Orange, DAPI, prohibitin-specific primary antibody and Alexa488-conjugated secondary antibody showed mitochondria, the nucleus and prohibitin, respectively (PDF 704 kb)

Table 1

Immunoprecipitation experiments demonstrated that prohibitin binds to mitochondrial trafficking proteins, including kinesin, unknown protein at 110 kDa (myosin head motor domain, SH3 domain, ATP binding domain, GenBank: BAG 65583, Accession: AK 304840), unknown protein at 88 kDa (cadherin repeat, Ca2+ binding, GenBank: BAC 28880, Accession: AK 034910) (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sripathi, S.R., He, W., Sylvester, O. et al. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium. Protein J 35, 179–192 (2016). https://doi.org/10.1007/s10930-016-9659-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9659-9

Keywords

Navigation