Skip to main content

Advertisement

Log in

Insecticidal Activity and Expression of Cytochrome P450 Family 4 Genes in Aedes albopictus After Exposure to Pyrethroid Mosquito Coils

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % d-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % d-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % d-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

CYP4:

Cytochrome P450 family 4

KT:

Knockdown time

KT50 :

50 % Knockdown time

KT90 :

90 % Knockdown time

References

  1. World Health Organization (2014) Dengue and severe dengue, fact sheet no. 117. Updated March 2014. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 3 Apr 2014

  2. World Health Organization (2009) Dengue: guidelines for diagnosis, treatment, prevention and control—new edition. http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf. Accessed 1 Feb 2014

  3. Beatty ME, Letson GW, Margolis HS (2009) Estimating the global burden of dengue. Am J Trop Med Hyg 81(Suppl. 1):231

    Google Scholar 

  4. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  Google Scholar 

  5. Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, Dulyachai W, Pengsaa K, Wartel TA, Moureau A, Saville M, Bouckenooghe A, Viviani S, Tornieporth NG, Lang J (2012) Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 380:1559–1567

    Article  CAS  Google Scholar 

  6. Halstead SB (2012) Dengue vaccine development: a 75% solution? Lancet 380:1535–1536

    Article  Google Scholar 

  7. World Health Organization (2012) Global strategy for dengue prevention and control 2012–2020. http://reliefweb.int/sites/reliefweb.int/files/resources/9789241504034_eng.pdf. Accessed 1 Feb 2014

  8. World Health Organization (2009) Guidelines for efficacy testing of household insecticide products. Mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and aerosols. http://whqlibdoc.who.int/hq/2009/WHO_HTM_NTD_WHOPES_2009.3_eng.pdf. Accessed 7 Sep 2013

  9. Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59:151–162

    Article  CAS  Google Scholar 

  10. Khambay BPS, Jewess PJ (2010) In: Gilbert LI, Gill SS (eds) Insect control: biological and synthetic agents. Elsevier, Oxford

    Google Scholar 

  11. Ranson H, Burhani J, Lumjuan N, Black WC IV (2010) Insecticide resistance in dengue vectors. TropIKA.net 1. http://journal.tropika.net/scielo.php?script=sci_arttext&pid=S2078-86062010000100003&lng=en. Accessed 6 Apr 2014

  12. Temu EA, Maxwell C, Munyekenye G, Howard AFV, Munga S, Avicor SW, Poupardin R, Jones JJ, Allan R, Kleinschmidt I, Ranson H (2012) Pyrethroid resistance in Anopheles gambiae, in Bomi County, Liberia, compromises malaria vector control. PLoS One 7:e44986

    Article  CAS  Google Scholar 

  13. Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131

    Article  CAS  Google Scholar 

  14. Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57:958–967

    Article  CAS  Google Scholar 

  15. Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  Google Scholar 

  16. Feyereisen R (2005) In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier, Oxford

    Google Scholar 

  17. Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    Article  CAS  Google Scholar 

  18. Karatolos N, Williamson MS, Denholm I, Gorman K, Ffrench-Constant RH, Bass C (2012) Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum. PLoS One 7:e31077

    Article  CAS  Google Scholar 

  19. Zhu F, Gujar H, Gordon JR, Haynes KF, Potter MF, Palli SR (2013) Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci Rep 3:1456

    Google Scholar 

  20. David JP, Boyer S, Mesneau A, Ball A, Ranson H, Dauphin-Villemant C (2006) Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochem Mol Biol 36:410–420

    Article  CAS  Google Scholar 

  21. Schuler MA (2011) P450s in plant–insect interactions. Biochim Biophys Acta 1814:36–45

    Article  CAS  Google Scholar 

  22. Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93:61–69

    Article  CAS  Google Scholar 

  23. Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K, Denholm I, Morin S (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644

    Article  CAS  Google Scholar 

  24. Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA (2001) Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochem Mol Biol 31:679–690

    Article  CAS  Google Scholar 

  25. Wen Z, Pan L, Berenbaum MR, Schuler MA (2003) Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Insect Biochem Mol Biol 33:937–947

    Article  CAS  Google Scholar 

  26. Giraudo M, Unnithan GC, Le Goff G, Feyereisen R (2010) Regulation of cytochrome P450 expression in Drosophila: genomic insights. Pestic Biochem Physiol 97:115–122

    Article  CAS  Google Scholar 

  27. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36:934–942

    Article  CAS  Google Scholar 

  28. Kalajdzic P, Markaki M, Oehler S, Savakis C (2013) Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line. Food Chem Toxicol 60:355–359

    Article  CAS  Google Scholar 

  29. Global Invasive Species Database (2014) Aedes albopictus. http://www.issg.org/database/species/ecology.asp?si=109&fr=1&sts=&lang=EN. Accessed 14 Mar 2014

  30. Mulla MS, Thavara U, Tawatsin A, Kong-Ngamsuk W, Chompoosri J (2001) Mosquito burden and impact on the poor: measures and costs for personal protection in some communities in Thailand. J Am Mosq Control Assoc 17:153–159

    CAS  Google Scholar 

  31. Lawrance CE, Croft AM (2004) Do mosquito coils prevent malaria? A systematic review of trials. J Travel Med 11:92–96

    Article  Google Scholar 

  32. Xue RD, Qualls WA, Phillips JD, Zhao TY (2012) Insecticidal activity of five commercial mosquito coils against Anopheles albimanus, Aedes albopictus, and Culex quinquefasciatus. J Am Mosq Control Assoc 28:131–133

    Article  Google Scholar 

  33. Avicor SW, Owusu EO, Wajidi MFF (2013) D-allethrin based mosquito coils for mosquito control: knockdown and mortality effects on the malaria vector Anopheles gambiae sensu lato. Int J Agric Biol 15:1035–1038

    CAS  Google Scholar 

  34. Deguchi Y, Yamada T, Hirose Y, Nagahori H, Kushida M, Sumida K, Sukata T, Tomigahara Y, Nishioka K, Uwagawa S, Kawamura S, Okuno Y (2009) Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation. Toxicol Sci 108:69–80

    Article  CAS  Google Scholar 

  35. Vences-Mejía A, Gómez-Garduño J, Caballero-Ortega H, Dorado-González V, Nosti-Palacios R, Labra-Ruíz N, Espinosa-Aguirre JJ (2012) Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s. Toxicol Mech Methods 22:41–46

    Article  Google Scholar 

  36. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  37. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  38. Abbott WS (1987) A method of computing the effectiveness of an insecticide. 1925. J Am Mosq Control Assoc 3:302–303

    CAS  Google Scholar 

  39. Lozano-Fuentes S, Saavedra-Rodriguez K, Black WC IV, Eisen L (2012) QCal: a software application for the calculation of dose-response curves in insecticide resistance bioassays. J Am Mosq Control Assoc 28:59–61

    Article  Google Scholar 

  40. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2006) An introduction to GenStat for Windows, 9th edn. VSN International, Hemel Hempstead

    Google Scholar 

  41. Debboun M, Strickman D (2013) Insect repellents and associated personal protection for a reduction in human disease. Med Vet Entomol 27:1–9

    Article  CAS  Google Scholar 

  42. Becker N, Petrić D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, Heidelberg

    Book  Google Scholar 

  43. Surendran SN, Kajatheepan A (2007) Perception and personal protective measures toward mosquito bites by communities in Jaffna District, northern Sri Lanka. J Am Mosq Control Assoc 23:182–186

    Article  CAS  Google Scholar 

  44. Lukwa N, Chiwade T (2008) Lack of insecticidal effect of mosquito coils containing either metofluthrin or esbiothrin on Anopheles gambiae sensu lato mosquitoes. Trop Biomed 25:191–195

    Google Scholar 

  45. Ujihara K, Mori T, Iwasaki T, Sugano M, Shono Y, Matsuo N (2004) Metofluthrin: a potent new synthetic pyrethroid with high vapor activity against mosquitoes. Biosci Biotechnol Biochem 68:170–174

    Article  CAS  Google Scholar 

  46. Sugano M, Ishiwatari T (2012) The biological activity of a novel pyrethroid: metofluthrin. Top Curr Chem 314:203–220

    Article  CAS  Google Scholar 

  47. Poupardin R, Riaz MA, Vontas J, David JP, Reynaud S (2010) Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19:185–193

    Article  CAS  Google Scholar 

  48. Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou AG, Savakis C (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One 7:e40296

    Article  CAS  Google Scholar 

  49. Kim CH, Muturi EJ (2012) Relationship between leaf litter identity, expression of cytochrome P450 genes and life history traits of Aedes aegypti and Aedes albopictus. Acta Trop 122:94–100

    Article  CAS  Google Scholar 

  50. Liu N, Li T, Reid WR, Yang T, Zhang L (2011) Multiple cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One 6:e23403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports of The World Academy of Sciences (TWAS) and the Universiti Sains Malaysia (USM) for a TWAS-USM postgraduate fellowship, USM Research University grant [Grant #1001/PJJAUH/815095] and the Malaysian Ministry of Education [ERGS Grant #203/PPJAUH/6730097]. The logistical support of staff of the Vector Control Research Unit, Universiti Sains Malaysia is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas W. Avicor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avicor, S.W., Wajidi, M.F.F., El-garj, F.M.A. et al. Insecticidal Activity and Expression of Cytochrome P450 Family 4 Genes in Aedes albopictus After Exposure to Pyrethroid Mosquito Coils. Protein J 33, 457–464 (2014). https://doi.org/10.1007/s10930-014-9580-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9580-z

Keywords

Navigation