Skip to main content
Log in

Comparative Analysis of the Effects of α-Crystallin and GroEL on the Kinetics of Thermal Aggregation of Rabbit Muscle Glyceraldehyde-3-Phosphate Dehydrogenase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Effects of α-crystallin and GroEL on the kinetics of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using dynamic light scattering and analytical ultracentrifugation. The analysis of the initial parts of the dependences of the hydrodynamic radius of protein aggregates on time shows that in the presence of α-crystallin or GroEL the kinetic regime of GAPDH aggregation is changed from the regime of diffusion-limited cluster–cluster aggregation to the regime of reaction-limited cluster–cluster aggregation, wherein the sticking probability for the colliding particles becomes lower the unity. In contrast to α-crystallin, GroEL does not interfere with formation of the start aggregates which include denatured GAPDH molecules. On the basis of the analytical ultracentrifugation data the conclusion has been made that the products of dissociation of GAPDH and α-crystallin or GroEL play an important role in the interactions of GAPDH and chaperones at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 1

Similar content being viewed by others

Abbreviations

DLCA:

Diffusion-limited cluster–cluster aggregation

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

RLCA:

Reaction-limited cluster–cluster aggregation

References

  1. Ellis RJ (1999) Curr Biol 9:137–139

    Article  Google Scholar 

  2. Hartl FU, Hayer-Hartl M (2002) Science 295:1852–1858

    Article  CAS  Google Scholar 

  3. Hartl FU (1996) Nature 381:571–579

    Article  CAS  Google Scholar 

  4. Ranson NA, White HE, Saibil HR (1998) Biochem J 333:233–242

    CAS  Google Scholar 

  5. Muchowski PJ, Bassuk JA, Lubsen NH, Clark JI (1997) J Biol Chem 272:2578–2582

    Article  CAS  Google Scholar 

  6. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Nat Struct Mol Biol 12:842–846

    Article  CAS  Google Scholar 

  7. Surin AK, Kotova NV, Kashparov IA, Marchenkov VV, Marchenkova SY, Semisotnov GV (1997) FEBS Lett 405:260–262

    Article  CAS  Google Scholar 

  8. Bukau B, Horwich AL (1998) Cell 92:351–366

    Article  CAS  Google Scholar 

  9. Fink AL (1999) Physiol Rev 79:425–449

    CAS  Google Scholar 

  10. Frydman J (2001) Annu Rev Biochem 70:603–647

    Article  CAS  Google Scholar 

  11. Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009) Nature 457:107–110

    Article  CAS  Google Scholar 

  12. Goloubinoff P, Gatenby AA, Lorimer GH (1989) Nature 337:44–47

    Article  CAS  Google Scholar 

  13. Holl-Neugebauer B, Rudolph R, Schmidt M, Buchner J (1991) Biochemistry 30:11609–11614

    Article  CAS  Google Scholar 

  14. Fisher MT (1992) Biochemistry 31:3955–3963

    Article  CAS  Google Scholar 

  15. Martin J, Horwich AL, Hartl FU (1992) Science 258:995–998

    Article  CAS  Google Scholar 

  16. Mendoza JA, Manson M, Joves F, Ackermann E (1996) Biotechnol Tech 10:535–540

    Article  CAS  Google Scholar 

  17. Hartman DJ, Surin BP, Dixon NE, Hoogenraad NJ, Hoj PB (1993) Proc Natl Acad Sci U S A 90:2276–2280

    Article  CAS  Google Scholar 

  18. Ellis RJ, Hartl FU (1999) Curr Opin Struct Biol 9:102–110

    Article  CAS  Google Scholar 

  19. Ellis RJ (1996) Fold Des 1:9–15

    Article  Google Scholar 

  20. Ellis RJ (2003) Protein folding. Curr Biol 13:R881–R883

    Article  CAS  Google Scholar 

  21. Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) Cell 107:235–246

    Article  CAS  Google Scholar 

  22. Farr GW, Fenton WA, Chaudhuri TK, Clare DK, Saibil HR, Horwich AL (2003) EMBO J 22:3220–3230

    Article  CAS  Google Scholar 

  23. Jaenicke R (1995) Philos Trans R Soc Lond B Biol Sci 348:97–105

    Article  CAS  Google Scholar 

  24. Corrales FJ, Fersht AR (1996) Fold Des 1:265–273

    Article  CAS  Google Scholar 

  25. Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Nature 371:614–619

    Article  CAS  Google Scholar 

  26. Lin Z, Schwartz FP, Eisenstein E (1995) J Biol Chem 270:1011–1014

    Article  CAS  Google Scholar 

  27. Aoki K, Taguchi H, Shindo Y, Yoshida M, Ogasahara K, Yutani K, Tanaka N (1997) J Biol Chem 272:32158–32162

    Article  CAS  Google Scholar 

  28. Magonet E, Delaive E, Martin B, Remacle J (1992) Biochem Int 28:603–612

    CAS  Google Scholar 

  29. Marchenkov VV, Sokolovskii IV, Kotova NV, Galzitskaya OV, Bochkareva ES, Girshovich AS, Semisotnov GV (2004) Biofizika (Mosc) 49:987–994

    CAS  Google Scholar 

  30. Marchenko NY, Marchenkov VV, Kaysheva AL, Kashparov IA, Kotova NV, Kaliman PA, Semisotnov GV (2006) Biochemistry (Mosc) 71:1357–1364

    Article  CAS  Google Scholar 

  31. Marchenkov VV, Semisotnov GV (2009) Int J Mol Sci 10:2066–2083

    Article  CAS  Google Scholar 

  32. Marchenkov VV, Marchenko NY, Marchenkova SY, Semisotnov GV (2006) Usp Biol Khim (Mosc) 46:279–302

    CAS  Google Scholar 

  33. Ybarra J, Horowitz PM (1995) J Biol Chem 270:22962–22967

    Article  CAS  Google Scholar 

  34. Surin AK, Kotova NV, SYu Marchenkova, Marchenkov VV, Semisotnov GV (1999) Bioorg Khim 25:358–364

    CAS  Google Scholar 

  35. Horwitz J (1992) Proc Natl Acad Sci U S A 89:10449–10453

    Article  CAS  Google Scholar 

  36. Carver JA, Guerreiro N, Nicholls KA, Truscott RJ (1995) Biochim Biophys Acta 1252:251–260

    Google Scholar 

  37. Wang K, Spector A (1994) J Biol Chem 269:13601–13608

    CAS  Google Scholar 

  38. Burgio MR, Kim CJ, Dow CC, Koretz JF (2000) Biochem Biophys Res Commun 268:426–432

    Article  CAS  Google Scholar 

  39. Abgar S, Vanhoudt J, Aerts T, Clauwaert J (2001) Biophys J 80:1986–1995

    Article  CAS  Google Scholar 

  40. Putilina T, Skouri-Panet F, Prat K, Lubsen NH, Tardieu A (2003) J Biol Chem 278:13747–13756

    Article  CAS  Google Scholar 

  41. Khanova HA, Markossian KA, Kurganov BI, Samoilov AM, Kleimenov SY, Levitsky DI, Yudin IK, Timofeeva AC, Muranov KO, Ostrovsky MA (2005) Biochemistry 44:15480–15487

    Article  CAS  Google Scholar 

  42. Markossian KA, Kurganov BI, Levitsky DI, Khanova HA, Chebotareva NA, Samoilov AM, Eronina TB, Fedurkina NV, Mitskevich LG, Merem’yanin AV, Kleymenov SY, Makeeva VF, Muronets VI, Naletova IN, Shalova IN, Asryants RA, Schmalhausen EV, Saso L, Panyukov YV, Dobrov EN, Yudin IK, Timofeeva AC, Muranov KO, Ostrovsky MA (2006) In: Obalinsky TR (ed) Protein folding: new research , Nova Science Publishers Inc., New York, pp 89–171

  43. Khanova HA, Markossian KA, Kleimenov SY, Levitsky DI, Chebotareva NA, Golub NV, Asryants RA, Muronetz VI, Saso L, Yudin IK, Muranov KO, Ostrovsky MA, Kurganov BI (2007) Biophys Chem 125:521–531

    Article  CAS  Google Scholar 

  44. Meremyanin AV, Eronina TB, Chebotareva NA, Kurganov BI (2008) Biopolymers 89:124–134

    Article  CAS  Google Scholar 

  45. Golub NV, Markossian KA, Sholukh MV, Muranov KO, Kurganov BI (2009) Eur Biophys J 38:547–556

    Article  CAS  Google Scholar 

  46. Markossian KA, Golub NV, Kleymenov SY, Muranov KO, Sholukh MV, Kurganov BI (2009) Int J Biol Macromol 44:441–446

    Article  CAS  Google Scholar 

  47. Markossian KA, Yudin IK, Kurganov BI (2009) Intern J Mol Sci 10:1314–1345

    Article  CAS  Google Scholar 

  48. Lin YZ, Liang SJ, Zhou JM, Tsou CL, Wu PQ, Zhou ZK (1990) Biochim Biophys Acta 1038:247–252

    CAS  Google Scholar 

  49. Levashov P, Orlov V, Boschi-Muller S, Talfournier F, Asryants R, Bulatnikov I, Muronetz V, Branlant G, Nagradova N (1999) Biochim Biophys Acta 1433:294–306

    CAS  Google Scholar 

  50. Shalova IN, Asryants RA, Sholukh MV, Saso L, Kurganov BI, Muronetz VI, Izumrudov VA (2005) Macromol Biosci 5:1184–1192

    Article  CAS  Google Scholar 

  51. Markossian KA, Khanova HA, Kleimenov SY, Levitsky DI, Chebotareva NA, Asryants RA, Muronetz VI, Saso L, Yudin IK, Kurganov BI (2006) Biochemistry 45:13375–13384

    Article  CAS  Google Scholar 

  52. Bhattacharyya AM, Horowitz PM (2002) Biochemistry 41:2248–2421

    Google Scholar 

  53. Melkani GC, Zardeneta G, Mendoza JA (2005) Int J Biochem Cell Biol 37:1375–1385

    Article  CAS  Google Scholar 

  54. Naletova IN, Muronetz VI, Schmalhausen EV (2006) Biochim Biophys Acta 1764:831–838

    CAS  Google Scholar 

  55. Scopes RK, Stoter A (1982) Methods Enzymol 90:479–490

    Article  CAS  Google Scholar 

  56. Kirschenbaum DM (1972) Int J Protein Res 4:63–73

    CAS  Google Scholar 

  57. Chiou SH, Azari P, Himmel ME, Squire PG (1979) Int J Pept Protein Res 13:409–417

    Article  CAS  Google Scholar 

  58. Walters C, Errington N, Rowe AJ, Harding SE (2002) Biochem J 364:849–855

    Article  CAS  Google Scholar 

  59. Panyukov Y, Yudin I, Drachev V, Dobrov E, Kurganov B (2007) Biophys Chem 127:9–18

    Article  CAS  Google Scholar 

  60. Weitz DA, Huang JS, Lin MY, Sung J (1984) Phys Rev Lett 53:1657–1660

    Article  CAS  Google Scholar 

  61. Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Proc R Soc Lond 423:71–87

    Article  CAS  Google Scholar 

  62. Golub N, Meremyanin A, Markossian K, Eronina T, Chebotareva N, Asryants R, Muronets V, Kurganov B (2007) FEBS Lett 581:4223–4227

    Article  CAS  Google Scholar 

  63. Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416–1419

    Article  CAS  Google Scholar 

  64. Brown PH, Schuck P (2006) Biophys J 90:4651–4661

    Article  CAS  Google Scholar 

  65. Brown PH, Balbo A, Schuck P (2007) Biomacromolecules 8:2011–2024

    Article  CAS  Google Scholar 

  66. Saibil H (2000) Curr Opin Struct Biol 10:251–258

    Article  CAS  Google Scholar 

  67. Meremyanin AV, Eronina TB, Chebotareva NA, Kleimenov SY, Yudin IK, Muranov KO, Ostrovsky MA, Kurganov BI (2007) Biochemistry (Mosc) 72:518–528

    Article  CAS  Google Scholar 

  68. Naletova IN, Shmal’gauzen EV, Shalova IN, Pleten AP, Tsiriul’nikov K, Haertle T, Muronets VI (2006) Biomed Khim (Mosc) 52:518–525

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Russian Foundation for Basic Research (grants 08-04-00666-a, 08-04-00231_a and 08-08-00540_a), the Program “Molecular and Cell Biology” of the Presidium of the Russian Academy of Sciences and CNTP (Russia, 02.512.11.2249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira A. Markossian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markossian, K.A., Golub, N.V., Chebotareva, N.A. et al. Comparative Analysis of the Effects of α-Crystallin and GroEL on the Kinetics of Thermal Aggregation of Rabbit Muscle Glyceraldehyde-3-Phosphate Dehydrogenase. Protein J 29, 11–25 (2010). https://doi.org/10.1007/s10930-009-9217-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9217-9

Keywords

Navigation