Skip to main content
Log in

Quantification of the Safe Maximal Lift in Functional Capacity Evaluations: Comparison of Muscle Recruitment Using SEMG and Therapist Observation

Journal of Occupational Rehabilitation Aims and scope Submit manuscript

Abstract

Introduction This study aimed to identify any correlation between muscle activity using surface electromyography (SEMG) and therapist determined safe maximal lift (SML) during the bench to shoulder lift of the WorkHab FCE. This would support construct (convergent) validity of SML determination in the WorkHab FCE. Method An experimental laboratory based study design was used. Twenty healthy volunteers performed the bench to shoulder lift of the WorkHab FCE whilst SEMG of upper trapezius, mid deltoid, thoracic, brachioradialis and bicep muscles were recorded. A summary of the data is presented using descriptive statistics and differences between groups were tested using generalised linear mixed models. Results Results showed a significant difference in activity and duration of muscle activation with increasing weight lifted [p = 0.000 and p = 0.024 (brachioradialis)]. There was a significant difference between the up lift (bench to shoulder) and the down lift (shoulder to bench) for all muscles (p = 0.000) except the brachioradialis (p = 0.819). No significant change was found in muscle activity before or after the SML. Conclusion Convergent validity of the bench to shoulder lift of the WorkHab FCE was not established as no relationship between the muscle recruitment using SEMG and SML, as determined by therapist observation was identified during this lift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Soer R, van der Schans C, Groothoff J, Geertzen J, Reneman M. Towards consensus in operational definitions in functional capacity evaluation: a delphi survey. J Occup Rehabil. 2008;18(4):389–400.

    Article  PubMed  Google Scholar 

  2. King P, Tuckwell N, Barrett T. A critical review of functional capacity evaluations. Phys Ther. 1998;78(8):852.

    PubMed  CAS  Google Scholar 

  3. Gouttebarge V, Wind H, Kuijer P, Sluiter J, Frings-Dresen M. Reliability and agreement of 5 Ergo-kit functional capacity evaluation lifting tests in subjects with low back pain. Arch Phys Med Rehabil. 2006;87(10):1365–70. doi:10.1016/j.apmr.2006.05.028.

    Article  PubMed  Google Scholar 

  4. Gross D, Battie M, Asante A. Evaluation of a short form functional capacity evaluation: less maybe best. J Occup Rehabil. 2007;17(3):422–35.

    Article  PubMed  Google Scholar 

  5. Lee G, Chan C, Hui-Chan C. Work profile and functional capacity of formwork carpenters at construction sites. Disabil Rehabil. 2001;23(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  6. Schonstein E, Kenny D. The value of functional and work place assessments in achieving a timely return to work for workers with back pain. Work. 2001;16(1):31–8.

    PubMed  Google Scholar 

  7. Strong S, Baptiste S, Clarke J, Costa M. Use of functional capacity evaluations in workplaces and the compensation system: a report on workers’ and users’ perceptions. Work. 2004;23(1):67–77.

    PubMed  Google Scholar 

  8. Innes E. Reliability and validity of functional capacity evaluations: an update. Int J Disab Manag Res. 2006;1(1):135–48.

    Article  Google Scholar 

  9. Cotton A, Schonstein E, Adams R. Use of functional capacity evaluations by rehabilitation providers in NSW. Work. 2006;26(3):287–95.

    PubMed  Google Scholar 

  10. Deen M, Gibson L, Strong J. A survey of occupational therapy in Australian work practice. Work. 2002;19(3):219–30.

    PubMed  Google Scholar 

  11. Innes E, Straker L. Workplace assessments and functional capacity evaluations: current practices of therapists in Australia. Work. 2002;18(1):51–66.

    PubMed  Google Scholar 

  12. Isernhagen S. Functional capacity testing:what’s new? what’s different. Interdiscip J Rehabil. 2009; June: 20–3.

  13. James C, Mackenzie L. Health professional’s perceptions and practices in relation to functional capacity evaluations: results of a quantitative survey. J Occup Rehabil. 2009;19(2):203–11. doi:10.1007/s10926-009-9174-3.

    Article  PubMed  Google Scholar 

  14. James C, Mackenzie L. The clinical utility of functional capacity evaluations: the opinion of health professionals working within occupational rehabilitation. Work. 2009;33(3):231–9. doi:10.3233/WOR-2009-0871.

    PubMed  Google Scholar 

  15. Scholz JP, Millford JP, McMillan AG. Neuromuscular coordination of squat lifting, I: effect of load magnitude. Phys Ther. 1995;75(2):119–32.

    PubMed  CAS  Google Scholar 

  16. Elfeituri FE. A biomechanical analysis of manual lifting tasks performed in restricted workspaces. Int J Occup Saf Ergon. 2001;7(3):333–46.

    PubMed  CAS  Google Scholar 

  17. Marras WS, Ferguson SA, Burr D, Davis KG, Gupta P. Functional impairment as a predictor of spine loading. Spine. 2005;30(7):729–37.

    Article  PubMed  Google Scholar 

  18. Scholz JP, McMillan AG. Neuromuscular coordination of squat lifting, II: individual differences. Phys Ther. 1995;75(2):133–44.

    PubMed  CAS  Google Scholar 

  19. Manning DP, Shannon HS. Slipping accidents causing low-back pain in a gearbox factory. Spine. 1981;6(1):70–2.

    Article  PubMed  CAS  Google Scholar 

  20. Wrigley AT, Albert WJ, Deluzio KJ, Stevenson JM. Differentiating lifting technique between those who develop low back pain and those who do not. Clin Biomech. 2005;20(3):254–63.

    Article  Google Scholar 

  21. Abdel-Moty E, Fishbain D, Khalil T, Sadek S, Cutler R, Steele-Rosomoff R, et al. Functional capacity and residual functional capacity and their utility in measuring work capacity. Clin J Pain. 1993;9(3):168–73.

    Article  PubMed  CAS  Google Scholar 

  22. Gibson L, Strong J. A review of functional capacity evaluation practice. Work. 1997;9(1):3–11.

    Article  Google Scholar 

  23. Mitchell T. Utilization of the functional capacity evaluation in vocational rehabilitation. J Vocat Rehabil. 2008;28(1):21–8.

    Google Scholar 

  24. Isernhagen S. Functional capacity evaluation:rationale, procedure, utility of the kinesiophysical approach. J Occup Rehabil. 1992;2(3):157–68.

    Article  Google Scholar 

  25. James C, Mackenzie L, Higginbotham N. Health professionals’ attitudes and practices in relation to functional capacity evaluations. Work. 2007;29(2):81–8.

    PubMed  Google Scholar 

  26. Bradbury S, Roberts D. Workhab functional capacity evaluation procedural manual WorkHab Australia; 1998.

  27. Cram J, Kasman G, Holtz J. Introduction to surface electromyography. Maryland: Aspen; 1998.

    Google Scholar 

  28. Cook C, Burgess-Limerick R, Papalia S. The effect of upper extremity support on upper extremity posture and muscle activity during keyboard use. Appl Ergon. 2004;35(3):285–92.

    Article  PubMed  Google Scholar 

  29. Hansson G, Nordander C, Asterland P, Ohlsson K, Strömberg U, Skerfving S, et al. Sensitivity of trapezius electromyography to differences between work tasks—influence of gap definition and normalisation methods. J Electromyogr Kinesiol. 2000;10(2):103–15.

    Article  PubMed  CAS  Google Scholar 

  30. Laursen B, Søgaard K, Sjøgaard G. Biomechanical model predicting electromyographic activity in three shoulder muscles from 3D kinematics and external forces during cleaning work. Clin Biomech. 2003;18(4):287–95.

    Article  CAS  Google Scholar 

  31. Davis KG, Jorgensen MJ, Marras WS. An investigation of perceived exertion via whole body exertion and direct muscle force indicators during the determination of the maximum acceptable weight of lift. Ergonomics. 2000;43(2):143–59.

    Article  PubMed  CAS  Google Scholar 

  32. Granström B, Kvarnström S, Tiefenbacher F. Electromyography as an aid in the prevention of excessive shoulder strain. Appl Ergon. 1985;16(1):49–54.

    Article  PubMed  Google Scholar 

  33. Jensen C, Finsen L, Hansen K, Christensen H. Upper trapezius muscle activity patterns during repetitive manual material handling and work with a computer mouse. J Electromyogr Kinesiol. 1999;9(5):317–25.

    Article  PubMed  CAS  Google Scholar 

  34. Gouttebarge V, Wind H, Kuijer P, Frings-Dresen M. Reliability and validity of functional capacity evaluation methods: a systematic review with reference to Blankenship, Ergos work simulator, Ergo-Kit and Isernhagen work system. Int Arch Occup Environ Health. 2004;77(8):527–37.

    Article  PubMed  Google Scholar 

  35. Gross D, Battie M. The prognostic value of functional capacity evaluation in patients with chronic low back pain: part 2: sustained recovery. Spine. 2004;29(8):920–4.

    Article  PubMed  Google Scholar 

  36. Innes E, Straker L. Reliability of work-related assessments. Work. 1999;13(2):107–24.

    PubMed  Google Scholar 

  37. Innes E, Straker L. Validity of work-related assessments. Work. 1999;13(2):125–52.

    PubMed  Google Scholar 

  38. Portney L, Watkins M. Foundations of clinical research: applications to practice. 3rd ed. Upper Saddle River: Pearson Prentice Hall; 2009.

    Google Scholar 

  39. Holtgrefe K, Glenn T. Principles of aerobic exercise. In: Kisner C, Colby L, editors. Therapeutic exercise: foundations and techniques. Philadelphia: F. A. Davis; 2007. p. 231–49.

    Google Scholar 

  40. Powell RA, Single HM. Focus groups. Int J Qual Health Care. 1996;8(5):499–504.

    Article  PubMed  CAS  Google Scholar 

  41. Kitzinger J. The methodology of focus groups: the importance of interaction between research participants. Sociol Health Illn. 1994;16(1):103–21. doi:10.1111/1467-9566.ep11347023.

    Article  Google Scholar 

  42. Gibson L, Strong J. Expert review of an approach to functional capacity evaluation. Work. 2002;19(3):231–42.

    PubMed  Google Scholar 

  43. StataCorp. Stata statistical software: version 11.1. College Station, TX. 11.1 ed 2009.

  44. Cole M, Grimshaw P, Burden A. Loads on the lumbar spine during a work capacity assessment test. Work. 2004;23(2):169–78.

    PubMed  CAS  Google Scholar 

  45. McBride JM, Larkin TR, Dayne AM, Haines TL, Kirby TJ. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int J Sports Physiol Perform. 2010;5(2):177–83.

    PubMed  Google Scholar 

  46. Robertson DG, Wilson JM, St Pierre TA. Lower extremity muscle functions during full squats. J Appl Biomech. 2008;24(4):333–9.

    PubMed  CAS  Google Scholar 

  47. Cifrek M, Medved V, Tonkovic S, Ostojic S. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical biomechanics (Bristol, Avon). 2009;24(4):327–40.

  48. Bosch T, de Looze MP, Kingma I, Visser B, van Dieën JH. Electromyographical manifestations of muscle fatigue during different levels of simulated light manual assembly work. J Electromyogr Kinesiol. 2009;19(4):e246–56.

    Article  PubMed  CAS  Google Scholar 

  49. Huysmans MA, Hoozemans MJM, van der Beek AJ, de Looze MP, van Dieën JH. Fatigue effects on tracking performance and muscle activity. J Electromyogr Kinesiol. 2008;18(3):410–9.

    Article  PubMed  CAS  Google Scholar 

  50. Roy SH, Bonato P, Knaflitz M. EMG assessment of back muscle function during cyclical lifting. J Electromyogr Kinesiol. 1998;8(4):233–45.

    Article  PubMed  CAS  Google Scholar 

  51. Arjmand N, Shirazi-Adl A. Biomechanics of changes in lumbar posture in static lifting. Spine. 2005;30(23):2637–48.

    Article  PubMed  Google Scholar 

  52. Nielsen PK, Andersen L, Jørgensen K. The muscular load on the lower back and shoulders due to lifting at different lifting heights and frequencies. Appl Ergon. 1998;29(6):445–50.

    Article  PubMed  CAS  Google Scholar 

  53. Marras WS, Granata KP, Davis KG, Allread WG, Jorgensen MJ. Effects of box features on spine loading during warehouse order selecting. Ergonomics. 1999;42(7):980–96.

    Article  PubMed  CAS  Google Scholar 

  54. NSW Workers Compensation Act (1987). http://www.legislation.nsw.gov.au/fullhtml/inforce/act+70+1987+FIRST+0+N?#pt.3-div.2-sec.40a.

  55. Fuller JR, Lomond KV, Fung J, Côté JN. Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. J Electromyogr Kinesiol. 2009;19(6):1043–52. doi:10.1016/j.jelekin.2008.10.009.

    Article  PubMed  Google Scholar 

  56. Gatchel RJ, Ricard MD, Choksi DN, Mayank J, Howard K. The comprehensive muscular activity profile (CMAP): its high sensitivity, specificity and overall classification rate for detecting submaximal effort on functional capacity testing. J Occup Rehabil. 2009;19(1):49–55.

    Article  PubMed  Google Scholar 

  57. Lemstra M, Olszynski W, Enright W. The sensitivity and specificity of functional capacity evaluations in determining maximal effort: a randomized trial. Spine. 2004;29(9):953–9.

    Article  PubMed  Google Scholar 

  58. Snook SH, Ciriello VM. The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics. 1991;34(9):1197–213.

    Article  PubMed  CAS  Google Scholar 

  59. Konz S. NIOSH lifting guidelines. Am Ind Hyg Assoc J. 1982;43(12):931–3.

    Article  PubMed  CAS  Google Scholar 

  60. Kuijer W, Dijkstra P, Brouwer S, Reneman M, Groothoff J, Geertzen J. Safe lifting in patients with chronic low back pain: comparing FCE lifting task and Niosh lifting guideline. J Occup Rehabil. 2006;16(4):579–89. doi:10.1007/s10926-005-9010-3.

    Article  PubMed  Google Scholar 

  61. Gross D, Battie M. Reliability of safe maximum lifting determinations of a functional capacity evaluation. Phys Ther. 2002;82(4):364–72.

    PubMed  Google Scholar 

  62. Gardener L, McKenna K. Reliability of occupational therapists in determining safe, maximal lifting capacity. Aust Occup Ther J. 1999;46(3):110–9. doi:10.1046/j.1440-1630.1999.00184.x.

    Article  Google Scholar 

  63. Gibson L, Strong J. Safety issues in functional capacity evalutaion: findings from a trial of a new approach for evaluating clients with chronic back pain. J Occup Rehabil. 2005;15(2):237–51. doi:10.1007/s10926-005-1222-z.

    Article  PubMed  Google Scholar 

  64. Isernhagen SJ, Hart DL, Matheson LM. Reliability of independent observer judgments of level of lift effort in a kinesiophysical functional capacity evaluation. Work. 1999;12(2):145–50.

    PubMed  Google Scholar 

  65. Reneman M, Jaegar S, Westmaas M, Goeken L. The reliability of determining effort level of lifting and carrying in a functional capacity evaluation. Work. 2002;18(1):23–7.

    PubMed  CAS  Google Scholar 

  66. James C, Mackenzie L, Capra M. Test–retest reliability of the manual handling component of the WorkHab functional capacity evaluation in healthy adults. Disabil Rehabil. 2010;32(22):1863–9. doi:10.3109/09638281003734466.

    Article  PubMed  Google Scholar 

  67. Matheson LN, Leggett S, Mooney V, Schneider K, Mayer J. The contribution of aerobic fitness and back strength to lift capacity. Spine. 2002;27(11):1208–12.

    Article  PubMed  Google Scholar 

  68. Schenk P, Klipstein A, Spillmann S, Stroyer J, Laubli T. The role of back muscle endurance, maximum force, balance and trunk rotation control regarding lifting capacity. Eur J Appl Physiol. 2006;96(2):146–56. doi:10.1007/s00421-004-1262-7.

    Article  PubMed  Google Scholar 

  69. Soderberg GL, Knutson LM. A guide for use and interpretation of kinesiologic electromyographic data. Phys Ther. 2000;80(5):485–98.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the individuals who volunteered to participate in this study and WorkHab Australia who donated the equipment to complete the study. This study was made possible with the support of a University of Newcastle Equity Fellowship grant (No.: GO189367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, C., Mackenzie, L. & Capra, M. Quantification of the Safe Maximal Lift in Functional Capacity Evaluations: Comparison of Muscle Recruitment Using SEMG and Therapist Observation. J Occup Rehabil 23, 419–427 (2013). https://doi.org/10.1007/s10926-012-9407-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10926-012-9407-8

Keywords

Navigation