Skip to main content
Log in

Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Different hydrogels based on chitosan were prepared by two environmentally friendly approaches: (i) oxidation under mild conditions and (ii) grafting of itaconic acid. Both procedures guide to it success modification leading hydrogels with adequate crosslinked degree. The hydrogels were structurally and chemically characterized and their swelling behavior was evaluated in water, NaCl and buffer solutions at different pHs. In all the cases, the increase of ionic strength decreases the equilibrium swelling. It was also demonstrated a superior swelling percentage at acidic pH. This percentage of swelling is significantly higher in grafted films than in the oxidized chitosans. Besides, the ability as fertilizers and water controlled-release superabsorbent hydrogels was evaluated. Consequently, the absorption and delivery of urea fertilizer was investigated as a function of initial concentration of urea in the media and the pH. These materials can be used in the agriculture as controlled fertilizer delivery as well as water regulators.

Graphical Abstract

Hydrogels based-chitosan were prepared by non-environmentally aggressive approaches. Chitosan was modified by mild oxidation and grafting reaction with itaconic acid. The hydrogels present adequate crosslinked degree and worthy swelling behavior. Hydrogels were evaluated as superabsorbent for urea and water controlled- release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bremner JM (1995) Fert Res 42:321

    Article  CAS  Google Scholar 

  2. Mikkelsen RL (1990) Fert Res 26:311

    Article  CAS  Google Scholar 

  3. Kenawy E-R (1998) J Macromol Sci Polym Rev 38:365

    Article  Google Scholar 

  4. Wu L, Liu M (2008) Carbohydr Polym 72:240

    Article  CAS  Google Scholar 

  5. Wu L, Liu M, Rui L (2008) Bioresour Technol 99:547

    Article  CAS  Google Scholar 

  6. Guo M, Liu M, Zhan F, Wu L (2005) Ind Eng Chem Fundam 44:4206

    Article  CAS  Google Scholar 

  7. Adali T, Yilmaz E (2009) Carbohydr Polym 77:136

    Article  CAS  Google Scholar 

  8. Bonferoni MC, Sandri G, Rossi S, Ferrari F, Caramella C (2009) Expert Opin Drug Deliv 6:923

    Article  CAS  Google Scholar 

  9. Zargar V, Asghari M, Dashti A (2015) ChemBioEng Rev 2:204

    Article  CAS  Google Scholar 

  10. Singla AK, Chawla M (2001) J Pharm Pharmacol 53:1047

    Article  CAS  Google Scholar 

  11. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Carbohydr Polym 83:1446

    Article  CAS  Google Scholar 

  12. Pedro AS, Cabral-Albuquerque E, Ferreira D, Sarmento B (2009) Carbohydr Polym 76:501

    Article  CAS  Google Scholar 

  13. Crini G (2005) Prog Polym Sci 30:38

    Article  CAS  Google Scholar 

  14. Ravi Kumar MNV (2000) React Funct Polym 46:1

    Article  Google Scholar 

  15. Rinaudo M (2006) Prog Polym Sci 31:603

    Article  CAS  Google Scholar 

  16. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) J Food Sci 72:R87

    Article  CAS  Google Scholar 

  17. Dutta PK, Duta J, Tripathi VS (2004) J Sci Ind Res 63:20

    CAS  Google Scholar 

  18. Singh V, Sharma AK, Sanghi R J Hazard Mater 2009, 166:327

    Article  CAS  Google Scholar 

  19. Zhang H-f, Zhong H, Zhang L-l, Chen S-b, Zhao Y-j, Zhu Y-l (2009) Carbohydr Polym 77:785

    Article  CAS  Google Scholar 

  20. Lv P, Bin Y, Li Y, Chen R, Wang X, Zhao B (2009) Polymer 50:5675

    Article  CAS  Google Scholar 

  21. Mun GA, Nurkeeva ZS, Dergunov SA, Nam IK, Maimakov TP, Shaikhutdinov EM, Lee SC, Park K (2008) React Funct Polym 68:389

    Article  CAS  Google Scholar 

  22. dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, Higa OZ, Gil MH (2006) Int J Pharm 310:37

    Article  Google Scholar 

  23. Varaprasad K, Reddy NN, Kumar NM, Vimala K, Ravindra S, Raju KM (2010) Int J Polym Mater Polym Biomater 59:981

    Article  CAS  Google Scholar 

  24. Gupta KC, Jabrail FH (2006) Carbohydr Polym 66:43

    Article  CAS  Google Scholar 

  25. Sun T, Xu P, Liu Q, Xue J, Xie W (2003) Eur Polym J 39:189

    Article  CAS  Google Scholar 

  26. Yu L, He Y, Bin L, Yue’e F (2003) J Appl Polym Sci 90:2855

    Article  Google Scholar 

  27. Hsu S-C, Don T-M, Chiu W-Y (2002) Polym Degrad Stab 75:73

    Article  CAS  Google Scholar 

  28. Naguib HF (2002) J Polymer Res 9:207

    Article  CAS  Google Scholar 

  29. Sabaa MW, Mokhtar SM (2002) Polym Test 21:337

    Article  CAS  Google Scholar 

  30. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Carbohydr Polym 66:229

    Article  CAS  Google Scholar 

  31. Martinez-Ruvalcaba A, Sanchez-Diaz JC, Becerra F, Cruz-Barba LE, Gonzalez-Alvarez A (2009) Express Polymer Lett 3:25

    Article  CAS  Google Scholar 

  32. Işıklan N, Kurşun F, İnal M (2010) Carbohydr Polym 79:665

    Article  Google Scholar 

  33. Quintana JR, Valderruten NE, Katime I (1999) Langmuir 15:4728

    Article  CAS  Google Scholar 

  34. Rodríguez E, Katime I (2003) J Appl Polym Sci 90:530

    Article  Google Scholar 

  35. Aoki S, Fukui A (1998) Polym J 30:295

    Article  CAS  Google Scholar 

  36. Okuda T, Ishimoto K, Ohara H, Kobayashi S (2012) Macromolecules 45:4166

    Article  CAS  Google Scholar 

  37. Watt GW, Chrisp JD (1954) Anal Chem 26:452

    Article  CAS  Google Scholar 

  38. Balázs N, Sipos P (2007) Carbohydr Res 342:124

    Article  Google Scholar 

  39. Kasaai MR, Arul J, Charlet G (2000) J Polym Sci Part B: Polym Phys 38:2591

    Article  CAS  Google Scholar 

  40. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) Polymer 42:3569

    Article  CAS  Google Scholar 

  41. Hirai A, Odani H, Nakajima A (1991) Polym Bull 26:87

    Article  CAS  Google Scholar 

  42. Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O (1991) Carbohydr Res 211:17

    Article  CAS  Google Scholar 

  43. Wang W, Bo S, Li S, Qin W (1991) Int J Biol Macromol 13:281

    Article  CAS  Google Scholar 

  44. Jiang X, Chen L, Zhong W (2003) Carbohydr Polym 54:457

    Article  CAS  Google Scholar 

  45. Kasaai MR (2008) Carbohydr Polym 71:497

    Article  CAS  Google Scholar 

  46. Kasaai MR (2010) Carbohydr Polym 79:801

    Article  CAS  Google Scholar 

  47. Zhang Y, Zhang X, Ding R, Zhang J, Liu J (2011) Carbohydr Polym 83:813

    Article  CAS  Google Scholar 

  48. Wang QZ, Chen XG, Liu N, Wang SX, Liu CS, Meng XH, Liu CG (2006) Carbohydr Polym 65:194

    Article  CAS  Google Scholar 

  49. Park JW, Choi KH, Park KK (1983) Bull Korean Chem Soc 4:68

    CAS  Google Scholar 

  50. Rinaudo M, Pavlov G, Desbrières J (1999) Polymer 40:7029

    Article  CAS  Google Scholar 

  51. Yilmaz E, Adali T, Yilmaz O, Bengisu M (2007) React Funct Polym 67:10

    Article  CAS  Google Scholar 

  52. Soto D, Urdaneta J, Pernía K, León O, Muñoz-Bonilla A, Fernández-García M (2015) Polym Adv Technol 26:147

    Article  CAS  Google Scholar 

  53. Soto D, Urdaneta J, Pernía K, León O, Muñoz-Bonilla A, Fernandez-García M (2015) Starch-Stärke, 26:147

    CAS  Google Scholar 

  54. Soto D, Urdaneta J, Pernia K, León O, Muñoz-Bonilla A, Fernández-García M (2016) J Polym Environ 24:343

    Article  CAS  Google Scholar 

  55. Don T-M, Chen H-R (2005) Carbohydr Polym 61:334

    Article  CAS  Google Scholar 

  56. Caner H, Yilmaz E (2007) O. Yilmaz. Carbohydr Polym 69:318

    Article  CAS  Google Scholar 

  57. Tripathy J, Mishra DK, Yadav M, Behari K Carbohydr Polym 2010, 79:40

    Article  CAS  Google Scholar 

  58. Milosavljević NB, M. Đ. Ristić, Perić-Grujić AA, Filipović JM, Štrbac SB, Rakočević ZL, Kalagasidis Krušić MT (2010) Chem Eng J 165:554

    Article  Google Scholar 

  59. Ávila A, Bierbrauer K, Pucci G, López-González M, Strumia M (2012) J Food Eng 109:752

    Article  Google Scholar 

  60. Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Langmuir 30:120

    Article  CAS  Google Scholar 

  61. Lazaridis NK, Kyzas GZ, Vassiliou AA, Bikiaris DN (2007) Langmuir 23:7634

    Article  CAS  Google Scholar 

  62. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Carbohydr Polym 71:682

    Article  CAS  Google Scholar 

  63. Bajpai AK, Giri A (2002) React Funct Polym 53:125

    Article  CAS  Google Scholar 

  64. Chen S, Liu M, Jin S, Chen Y (2005) J Appl Polym Sci 98:1720

    Article  CAS  Google Scholar 

  65. Sogias IA, Khutoryanskiy VV, Williams AC (2010) Macromol Chem Phys 211:426

    Article  CAS  Google Scholar 

  66. Niu Y, Li H (2012) Ind Eng Chem Fundam 51:12173

    CAS  Google Scholar 

Download references

Acknowledgements

Authors want to acknowledge CONDES-LUZ for the financial support with the project VAC-CONDES-CC-0130-12.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Orietta León or Marta Fernández-García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3497 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, O., Muñoz-Bonilla, A., Soto, D. et al. Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery. J Polym Environ 26, 728–739 (2018). https://doi.org/10.1007/s10924-017-0981-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0981-x

Keywords

Navigation