Skip to main content
Log in

Green Synthesis of Silver Nanoparticles and Study of Their Antimicrobial Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

One of the major disadvantages of polymers when used in food-contact applications is that they are very susceptible to microbial attack. On the other hand, silver nanoparticles have received increased attention as novel antimicrobial agents. Therefore, the introduction of silver nanoparticles into conventional polymers results in new materials with improved properties. In this investigation, colloidal silver nanoparticles using an environmentally friendly procedure were synthesized. An aqueous solution of AgNO3 was used as a silver precursor with ‘green’ reducing agents either different types of honey, or β-d-glucose. In the first case, different pH values, as well as the addition of poly(ethylene glycol), PEG were studied, while in the latter, the effect of reduction time in the presence of PEG with various average molecular weights was examined. Properties of the nanoparticles were measured using X-Ray diffraction, UV–Vis and FTIR spectroscopy. Using honey it seems that spherical particles are produced with the smaller average particle size obtained at pH 8.5. Use of honey has the advantage of being a natural product, although its main drawback is that its composition varies and it cannot be predefined to result in reproducible results. Use of β-d-glucose results in stable silver nanoparticles with small average particle size after 24 h reduction. The addition of low molecular weight PEG seems to be beneficial in the production of stable nanoparticles. Finally, the antimicrobial activity of the nanoparticles produced was investigated at different concentrations on both Gram positive and negative bacteria, such as Bacillus cereus, Bacillus subtilis, Escherichia coli and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135

    Article  CAS  Google Scholar 

  2. Jia Z, Sun H, Gu Q (2013) Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surf A 419:174–179

    Article  CAS  Google Scholar 

  3. Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14:4945–4949

    Article  CAS  Google Scholar 

  4. Lin XZ, Teng X, Yang H (2003) Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 19:10081–10085

    Article  CAS  Google Scholar 

  5. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  6. Papp S, Patakfalvi R, Dekany I (2008) Metal nanoparticle formation on layer silicate lamellae. Colloid Polym Sci 286:3–14

    Article  CAS  Google Scholar 

  7. David D, Evaboff J, Chumanov G (2005) Syntheis and optical properties of silver nanoparticles and arrays. Chemphyschem 6:1221–1231

    Article  Google Scholar 

  8. Hadad L, Perkas N, Gofer Y, Calderon-Moreno J, Ghule A, Gedanken A (2007) Sonochemical deposition of silver nanoparticles on wool fibers. J Appl Polym Sci 104:1732–1737

    Article  CAS  Google Scholar 

  9. Kapoor S (1998) Preparation, characterization, and surface modification of silver particles. Langmuir 14:1021–1025

    Article  CAS  Google Scholar 

  10. Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ (2011) Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 12:4872–4884

    Article  Google Scholar 

  11. Shameli K., Ahmad MB, Yunus WMZW, Ibrahim N, Rahman RA, Jokar M (2010) Silver/poly(lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579.

    Article  CAS  Google Scholar 

  12. Shameli K, Ahmad MB, Yunus, WMZW, Ibrahim NA (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomed 5:743–751

    Article  CAS  Google Scholar 

  13. Tsuji T, Thang DH, Okazaki Y, Nakanishi M, Tsuboi Y, Tsuji M (2008) Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl Surf Sci 254:5224–5230

    Article  CAS  Google Scholar 

  14. Shameli K, Ahmad MB, Yunus, W.M.Z.W., Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Green synthesis of silver/montmorillonite/chitosan bionanocopmosites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomedicine 5:875–887

    Article  CAS  Google Scholar 

  15. Shameli K, Ahmad MB, Yunus, W.M.Z.W., Ibrahim NA, Gharayebi Y, Sedaghat S (2010) Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. Int J Nanomedicine 5:1067–1077

    Article  CAS  Google Scholar 

  16. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shape. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  17. Donescu D, Nistor CL, Purcar C, Petcu C, Serban S, Corobea MC, Ghiurea M (2009) Formation and dissolution of silver nanoparticles. J Optoelectron Adv Mater 1:44–48. Int J Mol Sci (2012) 13:6649

  18. Tada H, Teranishi K, Ito S (1999) Additive effect of sacrificial electron donors on Ag/TiO2 photocatalytic reduction of bis(2-dipyridyl)-disulfide to 2-mercaptopyridine in aqueous media. Langmuir 15:7084–7087

    Article  CAS  Google Scholar 

  19. Chimentao RJ, Kirm I, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE, Fierro, J.L.G. (2005) Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles. Appl Surf Sci 252:793–800

    Article  CAS  Google Scholar 

  20. Zargar M, Hamid AA, Bakar FB, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang K, Ma H (2009) Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. Anal Biochem 387:13–19

    Article  CAS  Google Scholar 

  22. Nickel U, Castell AZ, Poppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface enhanced Raman spectroscopy. Langmuir 16:9087–9091

    Article  CAS  Google Scholar 

  23. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  Google Scholar 

  24. Dheeban Shankar P, Shobana S, Karuppusamy I, Pugazhendhi A, Sri Ramkumar V Arvindnarayan S Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb Technol 95:28–44

    Article  Google Scholar 

  25. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanopartcieles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  26. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jehangirian H, Mahdavi M, Abdollahi Y (2012) Int J Mol Sci 13:6639–6650.

    Article  CAS  Google Scholar 

  27. Philip D (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 73:650–653

    Article  Google Scholar 

  28. Philip D (2010) Honey mediated green synthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 75:1078–1081

    Article  Google Scholar 

  29. Stiufiuc R, Iacovita C, Lucaciu, C et al (2013) Nanoscale Res Let 8:47

    Article  Google Scholar 

  30. Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40

    Article  Google Scholar 

  31. Hanumanta Rao N, Lakshmidevi N, Pammi SVN, Kollu P, Ganapaty S, Lakshmi P (2016) Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C 62:553–557

    Article  Google Scholar 

  32. Taruna, Kaushal J, Bhatti J, Kumar P (2016) Green synthesis and physico-chemical study of silver nanoparticles extracted from a natural source Luffa acutangula. J Mol Liquids 224:991–998

    Article  Google Scholar 

  33. Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25

    Article  Google Scholar 

  34. Yan-Yu R, Hui Y, Tao W, Chuang W (2016) Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Phys Lett A 380:3773–3777

    Google Scholar 

  35. Philip D (2011) Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta Part A 78:327–331.

    Google Scholar 

  36. Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Sukumaran Venkatesh K, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A (2016) Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities Microbial Pathog 101:1–11.

    Article  Google Scholar 

  37. Kaviyaa S, Santhanalakshmia J, Viswanathanb B, Muthumaryc J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Part A 79 594–598.

    Article  Google Scholar 

  38. Morales-Luckie RA, Lopez fuentes-Ruiz AA, Olea-Mejía OF, Liliana AF, Sanchez-Mendieta V, Brostow W, Hinestroza JP (2016) Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent and natural fibers as templates: Agave lechuguilla and silk. Mater Sci Eng C 69 429–436.

    Article  Google Scholar 

  39. Ethiraj AS, Jayanthi S, Ramalingam C, Banerjee C (2016) Control of size and antimicrobial activity of green synthesized silver nanoparticles. Mater Lett 185:526–529.

    Article  Google Scholar 

  40. Kokila T, Ramesh PS, Geetha D (2016) Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf 134:467–473

    Article  CAS  Google Scholar 

  41. Shameli K Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jehangirian H (2012) Chem Central J 6:73

    Article  CAS  Google Scholar 

  42. Buruiana T, Melinte V, Chibac A et al (2012) J Biomat Sci 23:955–972

    Article  Google Scholar 

  43. Mandal A, Meda V, Zhang WJ, Farhan KM, Gnanamani A (2012) Colloids Surf B 90:191–196

    Article  CAS  Google Scholar 

  44. Jia Z, Sun H, Gu Q (2013) Colloids and Surf A 419:174–179

    Article  CAS  Google Scholar 

  45. Popa M, Pradell T, Crespo D, Calderón-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A Physicochem Eng Asp 303:184–190

    Article  CAS  Google Scholar 

  46. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  Google Scholar 

  47. Mishra S, Shimpi N, Sen T (2013) J Polym Res 20:49

    Article  Google Scholar 

  48. Singh N, Khanna PK (2007) Mater Chem Phys 104:367–372

    Article  CAS  Google Scholar 

  49. Su W, Liu J, Li W, Hu S, Tang J (2012) Nanosci Nanotechn Lett 4:1023–1027

    Article  CAS  Google Scholar 

  50. Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS (2015) Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J 72:256–269

    Article  Google Scholar 

  51. Siddiqui MN, Redhwi HH, Tsagkalias I, Softas C, Ioannidou MD, Achilias DS (2016) Synthesis and characterization of PHEMA/silver nanocomposites prepared via in situ radical polymerization. Thermochim Acta 643:53–64

    Article  Google Scholar 

  52. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in Plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759

    Article  CAS  Google Scholar 

  53. Díaz-Cruz C, Alonso Nuñez G, Espinoza-Gómez H, Flores-López LZ (2016) Effect of molecular weight of PEG or PVA as reducing-stabilizing agent in the green synthesis of silver-nanoparticles. Eur Polym J 83:265–277

    Article  Google Scholar 

  54. Thrasyvoulou A, Manikis J (1995) Some physicochemical and microscopic characteristics of Greek unifloral honeys. Apidologie 26 (6):441–452. 30–38

  55. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720.

    Article  CAS  Google Scholar 

  56. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia, for funding this work through project number IN131024. The support from Chemistry Department, Aristotle University of Thessaloniki, Greece, is sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nahid Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, M.N., Redhwi, H.H., Achilias, D.S. et al. Green Synthesis of Silver Nanoparticles and Study of Their Antimicrobial Properties. J Polym Environ 26, 423–433 (2018). https://doi.org/10.1007/s10924-017-0962-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0962-0

Keywords

Navigation