Skip to main content

Advertisement

Log in

Food Industry Co-streams: Potential Raw Materials for Biodegradable Mulch Film Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Vast amounts of co-streams are generated from plant and animal-based food processing industries. Efficient utilization of these co-streams is important from an economic and environmental perspective. Non-utilization or under-utilization of co-streams results in loss of potential revenues, increased disposal cost of these products and environmental pollution. At present, extensive research is taking place around the globe towards recycling of co-streams to generate value-added products. This review evaluates various co-streams from food processing industries as raw materials in developing biodegradable agricultural mulching applications. Among the agriculture-based co-streams, potato peels, tomato peels, carrot residues, apple pomace, coffee residues and peanut residues were reviewed with respect to production amount, composition, film forming components and film forming capabilities. Similarly, selected co-streams from slaughterhouses, poultry and fish processing industries were also reviewed and evaluated for the same purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preparatory study on food waste across E.U.-27 for the European Commission (2010) http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf

  2. Schieber A, Stintzing FC, Carle R (2001) Trends Food Sci Technol 12:401

    Article  CAS  Google Scholar 

  3. Lin CS, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S (2013) Energy Environ Sci 6(2):426

    Article  CAS  Google Scholar 

  4. Al-Weshahy A, Rao VA (2012) Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health—a review. INTECH Open Access Publisher

  5. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) J Food Sci 49(3):278

    CAS  Google Scholar 

  6. Chiellini E, Cinelli P, Chiellini F, Imam SH (2004) Macromol Biosci 4(3):218

    Article  CAS  Google Scholar 

  7. Se-Kwon K, Eresha M (2006) Food Res Int 39:383

    Article  CAS  Google Scholar 

  8. Ravindran R, Jaiswal AK (2016) Trends Biotechnol 34(1):58

    Article  CAS  Google Scholar 

  9. Sheldon RA (2014) Green Chem 16(3):950

    Article  CAS  Google Scholar 

  10. Pfaltzgraff LA, Cooper EC, Budarin V, Clark JH (2013) Green Chem 15(2):307

    Article  CAS  Google Scholar 

  11. Toldra F, Mora L, Reig M (2016) Meat Sci 120:54

    Article  CAS  Google Scholar 

  12. Mekonnen T, Mussone P, Bressler D (2016) Crit Rev Biotechnol 36(1):120

    Article  CAS  Google Scholar 

  13. Brandelli A, Sala L, Kalil SJ (2015) Food Res Int 73:3

    Article  CAS  Google Scholar 

  14. Demirbas A (2007) Prog Energy Combust Sci 33(1):1

    Article  CAS  Google Scholar 

  15. Menon V, Mala R (2012) Prog Energy Combust Sci 38(4):522

    Article  CAS  Google Scholar 

  16. Nanda S, Javeed M, Sivamohan NR, Janusz AK, Ajay KD (2014) Biomass Convers Biorefin 4(2):157

    Article  CAS  Google Scholar 

  17. Balat M (2011) Energ Convers Manag 52(2):858

    Article  CAS  Google Scholar 

  18. Bridgwater AV (2003) Chem Eng J 91(2):87

    Article  CAS  Google Scholar 

  19. Effendi A, Gerhauser H, Bridgwater AV (2008) Renew Sustain Energy Rev 12(8):2092

    Article  CAS  Google Scholar 

  20. Zhang L, Xu CC, Champagne P (2010) Energy Convers Manag 51(5):969

    Article  CAS  Google Scholar 

  21. Panwar NL, Kothari R, Tyagi VV (2012) Renew Sustain Energy Rev 16(4):1801

    Article  CAS  Google Scholar 

  22. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Renew Sustain Energy Rev 14(2):578

    Article  CAS  Google Scholar 

  23. Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Chem Soc Rev 40(11):5588

    Article  CAS  Google Scholar 

  24. Balasundram N, Sundram K, Samman S (2006) Food Chem 99(1):191

    Article  CAS  Google Scholar 

  25. Torres JA, Chen YC, Rodrigo-Garcia J, Jaczynski J (2007) Recovery of co-streams from seafood processing streams. In: Shahidi F (ed) Maximising the value of marine co-streams. Woodhead Publishing in Food Science, Technology and Nutrition, p 65

  26. Choudhury GS, Gogoi BK (1996) J Aquat Food Prod Technol 4(4):37

    Article  Google Scholar 

  27. Rustad T, Storrø I, Slizyte R (2011) Int J Food Sci Technol 46(10):2001

    Article  CAS  Google Scholar 

  28. Vázquez JA, Rodríguez-Amado I, Montemayor MI, Fraguas J, González MD, Murado MA (2013) Mar Drugs 11(3):747

    Article  CAS  Google Scholar 

  29. Sulabo RC, Stein HH (2013) J Anim Sci 91(3):1285

    Article  CAS  Google Scholar 

  30. Cascarosa E, Gea G, Arauzo J (2012) Renew Sustain Energy Rev 16(1):942

    Article  CAS  Google Scholar 

  31. Nikolaev IV, Sforza S, Lambertini F, Ismailova DY, Khotchenkov VP, Volik VG, Dossena A, Popov VO, Koroleva OV (2016) Food Chem 197:611

    Article  CAS  Google Scholar 

  32. Kasirajan N (2012) Agron Sustain Dev 32(2):501

    Article  CAS  Google Scholar 

  33. Corbin A, Cowan J, Miles C, Hayes D, Dorgan J, Inglis D (2013) Using biodegradable plastics as agricultural mulches. Washington State University Extension Fact Sheet: FS103E, pp 1–6. Available at https://pubs.wsu.edu/ItemDetail.aspx?ProductID=15552&SeriesCode=&CategoryID=&Keyword=mulch

  34. Kapanen A, Schettini E, Vox G, Itavaara M (2008) J Polym Environ 16(2):109

    Article  CAS  Google Scholar 

  35. Otey FH, Mark AM (1976) U.S. Patent No. 3,949,145

  36. Halley P, Rutgers R, Coombs S, Kettels J, Gralton J, Christie G, Jenkins M, Beh H, Griffin K, Jayasekara R, Lonergan G (2001) Starch-Stärke 53:362

    Article  CAS  Google Scholar 

  37. Vox G, Schettini E (2007) Polym Test 26(5):639

    Article  CAS  Google Scholar 

  38. Ali Y, Ghorpade V, Weber R, Hanna M (2004) U.S. Patent No. 6,672,001

  39. Sartore L, Vox G, Schettini E (2013) J Polym Environ 21(3):718

    Article  CAS  Google Scholar 

  40. Malinconico M, Immirzi B, Santagata G, Schettini E, Vox G, Mugnozza GS (2007) An overview on innovative biodegradable materials for agricultural applications. In: Moeller HW (ed) Progress in polymer degradation and stability research. Nova Science Publishers, Inc, p 69

  41. FAO (2012) FAOSTAT. Food and Agriculture Organization of the United Nations http://faostat.fao.org/site/339/default.aspx. Accessed 6 June 2016

  42. Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Polym Rev 53:627

    Article  CAS  Google Scholar 

  43. Burlingame B, Mouillé B, Charrondière R (2009) J Food Comp Anal 22:494

    Article  CAS  Google Scholar 

  44. Helsky T, Anttalainen M, Palviainen S, Kemppainen P, Lehto M, Salo T, Mäkelä M, Tuominen A, Piilo T (2006) Paras käytettävissä oleva tekniikka (BAT) perunan ja juuresten koneellisessa kuorinnassa ja käsittelyssä. In: Suomen ympäristö 57/2006. Edita Prima Oy, Helsinki

  45. Adler S, Honkapää K, Saarela M, Slizyte R, Sterten H, Vikman M, Løes A-K (2014) Utilisation of co-streams in the Norwegian food processing industry. Bioforsk Report Vol. 9 Nr. 82

  46. Haugaard VK, Mortensen G, Mattsson B, Sonesson U (2003) Biobased food packaging. Environmentally friendly food processing. CRC Press, Boca Raton

    Google Scholar 

  47. Rogols S, Sirovatka DM, Widmaier RG (2002) Packaging and structural materials comprising potato peel waste. EP11712 90 (A1)

  48. Cao L, Zhou R (2009) Edible packaging film prepared by potato residue and preparation method. CN101456979 (A)

  49. Cao L, Bian X (2011) Edible packaging film prepared from carboxymethylated potato residues and preparation method thereof. CN102153783 (A)

  50. Kang HJ, Min SC (2010) LWT Food Sci Technol 43(6):903

    Article  CAS  Google Scholar 

  51. Tammineni N, Ünlü G, Min SC (2013) Int J Food Sci Technol 48(1):211

    Article  CAS  Google Scholar 

  52. Zhang Y, Yuan X, Thompson MR, Liu Q (2012) J Appl Polym Sci 125:3250

    Article  CAS  Google Scholar 

  53. Rommi K, Rahikainen J, Vartiainen J, Holopainen U, Lahtinen P, Honkapää K, Lantto R (2016) J Appl Polym Sci 133(42862):1

    Google Scholar 

  54. Merlo CA (2001) Additional Resource G: Alternative methods for disposal/ utilization of organic by-products from the literature. Presented at the 1992 Food Industry Environmental Conference, Georgia Institute of Technology, Atlanta, Georgia Copyright 1992, pp G1–G14. http://www.elibrary.dep.state.pa.us/dsweb/Get/Document-48930/Resource%20G.pdf. Accessed 14 Sept 2001

  55. Studt T (1990) “Degradable plastics.” R&D Magazine, March issue 1990, pp 50–56

  56. Keeler R (1991) “Don’t let food go to waste—make plastic out of it.” R&D Magazine, February issue 1991, pp 52–57

  57. Ewans K (1991) Nematologica 37:225

    Article  Google Scholar 

  58. Stone LEW, Webley DP (1975) Plant Pathol 24:74

    Article  Google Scholar 

  59. Lindhardt K (1959) Kartoffelål—en samlet oversikt. Statens Plantetilsyn, Opplysende Skriftrække, København, pp 1–52

  60. Ebert AW (2013) Chapter 16: ex situ conservation of plant genetic resources of major vegetables. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 373–417

    Chapter  Google Scholar 

  61. Bao B, Chang KC (1994) J Food Sci 59:1159

    Article  CAS  Google Scholar 

  62. Rani B, Kawatra A (1994) Plant Foods Hum Nutr 45:343

    Article  CAS  Google Scholar 

  63. Sharma K, Karki S, Thakur N, Attri S (2012) J Food Sci Technol 49:22

    Article  CAS  Google Scholar 

  64. Chau CF, Chen CH, Lee MH (2004) Food Sci Technol 37:155

    CAS  Google Scholar 

  65. Chen BH, Tang YC (1998) J Agric Food Chem 46:2312

    Article  CAS  Google Scholar 

  66. Liessens B, Grootaerd H, Verstraete W (1997) Utilization of carrot pulp/pomace as alternative RACOD-source enhancing granulation and sludge bed stability in UASB reactors. Eleventh Forum Appl Biotechnol Fac Agric Appl Biol Sci 62:1553

    Google Scholar 

  67. Garg N, Hang YD (1995) J Food Sci Technol 32:119

    CAS  Google Scholar 

  68. Yoon KY, Cha M, Shin SR, Kim KS (2005) Food Chem 92:151

    Article  CAS  Google Scholar 

  69. Bhatti HN, Nasir AW, Hanif MA (2010) Desalination 253:78

    Article  CAS  Google Scholar 

  70. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Comp Revs Food Sci Food Saf 9:55243

    Google Scholar 

  71. Siqueira G, Oksman K, Tadokoro SK, Mathew AP (2016) Compos Sci Technol 123:49

    Article  CAS  Google Scholar 

  72. Iahnkea AOES, Costa TMH, De Oliveira Rios A, Flôresa SH (2015) Ind Crops Prod 76:1071

    Article  CAS  Google Scholar 

  73. Alves JS, dos Reis KC, Menezes EGT, Pereira FV, Pereira J (2015) Carbohydr Polym 115:215

    Article  CAS  Google Scholar 

  74. Wadhwa M, Bakshi MPS (2013) Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. In: Makkar HPS (ed) RAP Publication 2013/04, FAO, p 30

  75. FAO (2011) FAOSTAT. Food and Agriculture Organization of the United Nations. Available at http://faostat.fao.org/default.aspx

  76. Tommonaro G, Poli A, De Rosa S, Nicolaus B (2008) Molecules 13(6):384

    Article  CAS  Google Scholar 

  77. Van Buren JP (1991) Function of pectin in plant tissue structure and firmness. In: The chemistry and technology of pectin. Academic Press, California

  78. Lopes da Silva JA, Rao MA (2006) Food polysaccharides and their applications, 2nd edn. Taylor & Francis, Abingdon

    Google Scholar 

  79. Anuradha K, Padma PN, Venkateshwar S, Reddy G (2010) Indian J Microbiol 50:339

    Article  CAS  Google Scholar 

  80. http://www.imarcgroup.com/pectin-technical-material-market-report. Accessed 15 March 2016

  81. Ciolacu L, Nicolau AI, Hoorfar J (2014) Global safety of fresh produce a handbook of best practice, Innovative Commercial Solutions and Case Studies. Woodhead Publishing Limited, Sawston

    Google Scholar 

  82. http://www.imarcgroup.com/pectin-technical-material-market-report

  83. Liu L, Liu C-K, Fishman ML, Hicks KB (2007) J Agric Food Chem 55(6):2349

    Article  CAS  Google Scholar 

  84. Grassino AN, Halambek J, Djaković S, Rimac Brnčić S, Dent M, Grabarić Z (2016) Food Hydrocoll 52:265

    Article  CAS  Google Scholar 

  85. Hayash T (1989) Annu Rev Plant Physiol Plant Mol Biol 40:139

    Article  Google Scholar 

  86. Rindlav-Westling A, Stading M, Gatenholm P (2002) Biomacromolecules 3:84

    Article  CAS  Google Scholar 

  87. Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG (1991) Carbohydr Res 214:299

    Article  CAS  Google Scholar 

  88. Simi CK, Abraham TE (2010) Colloid Polym Sci 288:297

    Article  CAS  Google Scholar 

  89. Bergström EM, Salmén L, Kochumalayil J, Berglund L (2012) Carbohydr Polym 87:2532

    Article  CAS  Google Scholar 

  90. Min B, Lim J, Ko S, Lee KG, Lee SH, Lee S (2011) Bioresour Technol 102(4):3855

    Article  CAS  Google Scholar 

  91. Walia M, Sharma U, Bhushan S, Kumar N, Singh B (2013) Chem Nat Compd 49(5):794

    Article  CAS  Google Scholar 

  92. Nawirska A, Kwasniewska M (2005) Food Chem 91:221

    Article  CAS  Google Scholar 

  93. Ovodov YS (2009) Russ J Bioorg Chem 35:269

    Article  CAS  Google Scholar 

  94. Giovanetti MH, Nogueira A, de Oliveira CL, Wosiacki G (2012) Chromatography—the most versatile method of chemical analysis. InTech, Rijeka

    Google Scholar 

  95. Bhushan S, Kalia K (2008) Crit Rev Biotechnol 181:1199

    Google Scholar 

  96. Teixeira EM, Da Róz AL (2007) Carbohydr Polym 69:619

    Article  CAS  Google Scholar 

  97. Rababah TM, Hettiarachchy NS, Horax R (2004) J Agric Food Chem 52:5183

    Article  CAS  Google Scholar 

  98. Gaikwad KK, Lee JY, Lee YS (2015) J Food Sci Technol. doi:10.1007/s13197-015-2104-9

    Google Scholar 

  99. International Coffee Organization (2016) The current state of the global coffee trade. http://www.ico.org/monthly_coffee_trade_stats.asp. Accessed 29 Jan 2016

  100. Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Columbus F (ed) Agricultural wastes. Nova Publishers, New York

    Google Scholar 

  101. Sustainable America Blog, 6 ways the coffee industry is turning waste into a resource. http://www.sustainableamerica.org/blog/6-ways-the-coffee-industry-is-turning-waste-into-a-resource/. 14 Oct 2014

  102. Burrows B (2016) How coffee could ‘give a lift’ in another way. Recycling and Waste World. http://www.recyclingwasteworld.co.uk/in-depth-article/spent-coffee-grounds/74144/. Accessed 26 Feb 2016

  103. Rathinavelu R, Graziosi G (2015) Use of coffee wastes and by-products co-streams: a summary. Potential alternative use of coffee wastes and by-products. International Coffee Organization, pp 1–4 http://www.ico.org/documents/ed1967e.pdf. 17 Aug 2005

  104. Batista LR, Chalfoun SM, Silva CF, Cirillo M, Varga EA, Schwanc RF (2009) Food Control 20(9):784

    Article  CAS  Google Scholar 

  105. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315

    Article  CAS  Google Scholar 

  106. Bressani R (1979) Antiphysiological factors in coffee pulp. In: Braham JE, Bressani R (eds) Coffee pulp composition, technology and utilization. IDRC Publisher, pp 83–96

  107. Roussos S, Gaime IP, Denis S (1998) Biotechnological management of coffee pulp. International Training Course on Solid State Fermentation. Document ORSTOM, Montpellier, France, pp 151–161. Available at https://www.researchgate.net/profile/Isabelle_Gaime/publication/32968939_Biotechnological_management_of_coffee_pulp/links/540714250cf2bba34c1e8997.pdf#page=159

  108. Bekalo SA, Reinhardt HW (2010) Mater Struct 43:1049

    Article  CAS  Google Scholar 

  109. Baek B-S, Park J-W, Lee B-H, Kim J-HJ (2013) Polym Environ 21:702–709

    Article  CAS  Google Scholar 

  110. Sathasivam K, Teoh A, Xavier R, Marimuthu K (2012) Mechanical properties, water resistance and biodegradability of esterified coffee dust/poly(vinyl alcohol) blend film. In: Souvenir of 2nd international science Congress, Vrindavan

  111. Hyun KT, Won LJ (2006) A process for producing activated carbon from coffee grounds. KR20060108345 (A)

  112. Kanazawa K, Inomata K (2001) Activated carbon and method for producing the same. JP2001287905 (A)

  113. Kuo N-W, Wu P-C (2003) Method for manufacturing activated carbon from coffee waste. US2003196954 (A1)

  114. Glocal Statistical Review 2014–2015 (2015) INC International Nut & Dried Fruit. www.nutfruit.org, https://www.nutfruit.org/wp-continguts/uploads/2015/11/global-statistical-review-2014-2015_101779.pdf

  115. Zaaba NF, Ismail H, Jaafar M (2014) Bioresources 9(2):2128

    Article  CAS  Google Scholar 

  116. Raju GU, Kumarappa S, Gaitonde VN (2012) J Mater Environ Sci 3(5):907

    CAS  Google Scholar 

  117. Tatli E (2013) Pretreatment of peanut shells for co-production of glucose and concrete admixture. A Master Thesis. Middle East Technical University, p 1–89

  118. Obasi HC (2015) J Polym 2015(189289):1

    Google Scholar 

  119. Meeker DL, Hamilton CR (2006) An overview of the rendering industry. In: Meeker DL (ed) Essential rendering: all about the animal by-products industry. National Renderers Association, Arlington, VA, pp 1–314. Available at http://assets.nationalrenderers.org/essential_rendering_book.pdf

  120. Bisplinghoff FD (2006) A history of North American rendering. In: Meeker DL (eds) Essential rendering: all about the animal by-products industry,pp 17

  121. European Commission Executive summary, Slaughterhouses and Animal By-products Industries: Best Available Techniques in the Slaughterhouses and Animal By-products Industries, May 2005

  122. Guidance (2014) Animal by-products: collection, storage and disposal. Department for Environment, Food & Rural Affairs. https://www.gov.uk/dealing-with-animal-by-products Accessed 10 April 2014

  123. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) J Food Sci Technol 49(3):278

    Article  CAS  Google Scholar 

  124. Hamilton (2002) Protein sources for the animal feed industry. FAO Animal production and health. Expert Consultation and Workshop, Bangkok

  125. http://ingredients101.com/meatbm.htm

  126. Bolarinwa OA, Olukosi OA, Adeola O (2012) Can J Anim Sci 92:73

    Article  CAS  Google Scholar 

  127. Garcia RA, Rosentrater KA, Flores RA (2006) Appl Eng Agric 22:729–736

    Article  Google Scholar 

  128. Lee J-H, Won M, Song KB (2015) LWT Food Sci Technol 63(1):700

    Article  CAS  Google Scholar 

  129. Nzioki BM (2010) Biodegradable polymer blends and composites from proteins produced by animal co-product. All theses. Paper 817, Clemson University, TigerPrints

  130. Vatansever F, Nzioki B, Sharma S, Luzinov I (2011) Biodegradable plastics from meat and bone meal (Conference Paper), 241st ACS National Meeting and Exposition, Anaheim

  131. Srubar WV, Billington SL (2013) PHBV/Ground bone meal and pumice powder engineered biobased composite materials for construction. US8507588 (B2)

  132. Lukubira S, Ogale A (2014) J Appl Polym Sci 131(41145):1

    Google Scholar 

  133. Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for the development of active biodegradable films. Trends Food Sci Technol 20:3

    Article  CAS  Google Scholar 

  134. Haug IJ, Draget KI (2009) Handbook of hydrocolloids. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  135. FAO (2013) Fisheries and aquaculture information and statistics branch. The State of World Fisheries and Aquaculture, Rome, p 2014

    Google Scholar 

  136. GME Market data Official website of GME (2007) Gelatin manufacturers of Europe GME Market Data, Brussels. http://www.gelatine.org. Accessed 6 June 2016

  137. http://www.nitta-gelatin.co.jp/english/company/business.html. Accessed 15 March 2016

  138. Jones GMJ (2004) Rheological properties of gelatin, carrageenan and locust bean gum mixtures. Ph.D. thesis, University of Nottingham

  139. Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP (2011) Food Hydrocoll 25:1813

    Article  CAS  Google Scholar 

  140. De Almeida PF, Lannes SCDS (2013) J Food Process Eng 36:824

    Article  CAS  Google Scholar 

  141. Yang H, Wang Y (2009) Food Hydrocoll 23:577

    Article  CAS  Google Scholar 

  142. Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (ed) Food packaging and preservation. Elsevier Applied Science, London, pp 371–394

    Google Scholar 

  143. Wittaya T (2012) Chapter 3: protein-based edible films: characteristics and improvement of properties. In: Eissa AA (ed) Agricultural and biological sciences: structure and function of food engineering. InTech. doi:10.5772/48167

  144. GMIA, Gelatin Handbook (2012) Gelatin Manufacturers Institute of America, pp 1–25. http://www.gelatin-gmia.com/images/GMIA_Gelatin_Manual_2012.pdf

  145. Gorman J (2002) Materials take wing: what to do with 4 billion pounds of feathers? Sci News 161(8):120

    Article  Google Scholar 

  146. Schrooyen PMM, Dijkstra PJ, Oberthur RC, Bantjes A, Feijen J (2001) J Agric Food Chem 49:221

    Article  CAS  Google Scholar 

  147. Gillespie JM (1990) The proteins of hair and other hard α-keratins. In: Goldman RA, Steinert PM (eds) Cellular and molecular biology of intermediate filaments. Plenum Press, New York, p 95

    Chapter  Google Scholar 

  148. Fujii T, Li D (2008) J Biol Macromol 8(2):48

    CAS  Google Scholar 

  149. Molloy PL, Powell BC, Gregg K, Barone ED, Rogers GE (1982) Nucleic Acid Res 10:6007

    Article  CAS  Google Scholar 

  150. Fraser RDB, MacRae TP, Rogers GE (1972) Keratins: their composition, structure, and biosynthesis. Charles C. Thomas, Springfield

    Google Scholar 

  151. Gupta A, Kamarudin NB, Kee CYG, Yunus RBM (2012) J Chem Chem Eng 6:732

    CAS  Google Scholar 

  152. Bragulla HH, Homberger DG (2009) J Anat 214:516

    Article  CAS  Google Scholar 

  153. Nakamura A, Arimoto M, Takeuchi K, Fujii T (2002) Biol Pharm Bull 25:569

    Article  CAS  Google Scholar 

  154. Yin X-C, Li F-Y, He Y-F, Wang Y, Wang R-M (2013) Biomater Sci 1:528

    Article  CAS  Google Scholar 

  155. Wang Y-X, Cao X-J (2012) Process Biochem 47:896

    Article  CAS  Google Scholar 

  156. De Almeida PF, de Araújo MGO, Santana JCC (2012) Acta Sci Technol 34:345

    Article  CAS  Google Scholar 

  157. Liu DC, Lin YK, Chen MT (2001) Asian Australas J Anim Sci 14:1638

    Article  CAS  Google Scholar 

  158. Lee J-H, Lee J, Song KB (2015) Food Hydrocoll 46:208

    Article  CAS  Google Scholar 

  159. Cordeiro CM, Hincke MT (2011) Recent Pat Food Nutr Agric 3:1

    Article  CAS  Google Scholar 

  160. Stadelman WJ (2000) Eggs and egg products, 2nd edn. Wiley, New York

    Google Scholar 

  161. Verma N, Kumar V, Bansal MC (2012) Pol J Environ Stud 21:491

    CAS  Google Scholar 

  162. Burley RW, Vadehra DV (1989) The egg shell and shell membranes: properties and synthesis. The avian egg, chemistry and biology. Wiley, New York

    Google Scholar 

  163. Hincke MT, Nys Y, Gautron J (2010) J Poult Sci 47:208

    Article  CAS  Google Scholar 

  164. Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT (2004) Comptes Rendus Paleovol 3(6):549

    Article  Google Scholar 

  165. CNN Tech. Scientists hatch plan to recycle eggshells into plastics. 3 April 2012

  166. Arias JL, Quijada R, Toro P, Yazdani-Pedram M (2008) US7459492

  167. Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Mater Lett 61:4347

    Article  CAS  Google Scholar 

  168. Toro P, Quijada R, Arias JL, Pedram-Yazdani M (2007) Macromol Mater Eng 292:1027

    Article  CAS  Google Scholar 

  169. Iyer KA, Torkelson JM (2014) Compos Sci Technol 102:152

    Article  CAS  Google Scholar 

  170. Prabhakar MN, Shah AUR, Song JI (2015) Fabrication and characterization of eggshell powder particles fused wheat protein isolate green composite for packaging applications. Polym Compos. doi:10.1002/pc.23527

    Google Scholar 

  171. Su O, Xi T, Li Y, Xiong L (2014) PLoS ONE 9:e106727

    Article  CAS  Google Scholar 

  172. Olsen EM, Serbezov D, Vøllestad LA (2014) Ecol Evol 4(9):1601

    Article  Google Scholar 

  173. Gómez-Guillén MC, Turnay J, Fernandez-Diaz MD, Ulmo N, Lizarbe MA, Montero P (2002) J Food Hydrocoll 16:25

    Article  Google Scholar 

  174. Shahidi F (1994) Seafood processing by-products. In: Shahidi F, Botta JR (eds) Seafoods chemistry, processing, technology and quality. Blackie Academic and Professional, Glasgow, pp 320–334

    Chapter  Google Scholar 

  175. Ghaedian R, Coupland JN, Decker EA, McClemets DJ (1998) J Food Eng 35:323

    Article  Google Scholar 

  176. Ghaly AE, Ramakrishnan VV, Brooks MS, Budge SM, Dave D (2013) J. Microb Biochem Technol 5(4):107

    Google Scholar 

  177. Muyonga JH, Cole CGB, Duodu KG (2004) Food Chem 85(1):81

    Article  CAS  Google Scholar 

  178. Wasswa J, Tang J, Gu X (2007) Food Rev Int 23:159

    Article  CAS  Google Scholar 

  179. Gómez-Estaca J, Montero P, Fernández-Martín F, Gómez-Guillén MC (2009) J Food Eng 90(4):480

    Article  CAS  Google Scholar 

  180. Thomazine M, Carvalho RA, Sobral PIA (2005) J Food Sci 70(3):172

    Article  Google Scholar 

  181. Carvalho RA, Sobral PJA, Thomazine M, Habitante AMQB, Giménez B, Gómez-Guillén MC, Montero P (2008) Food Hydrocoll 22(6):1117

    Article  CAS  Google Scholar 

  182. Arvanitoyannis IS, Nakayama A, Aiba S (1998) Carbohydr Polym 37(4):371

    Article  CAS  Google Scholar 

  183. Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Trends Food Sci Technol 20(8):316

    Article  CAS  Google Scholar 

  184. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Biomaterials 22(8):763

    Article  CAS  Google Scholar 

  185. Gómez-Guillén MC, Montero P (2001) J Food Sci 66:213

    Article  Google Scholar 

  186. Tongnuanchan P, Benjakul S, Prodpran T (2012) Food Chem 134:1571

    Article  CAS  Google Scholar 

  187. Kim SK, Mendis E (2005) Food Res Int 39:383

    Article  CAS  Google Scholar 

  188. Prashanth KVH, Tharanathan RN (2007) Trends Food Sci Technol 18(3):117

    Article  CAS  Google Scholar 

  189. Hayes M, Carney B, Slater J, Brück W (2008) Biotechnol J 3(7):878. doi:10.1002/biot.200800027

    Article  CAS  Google Scholar 

  190. Aider M (2010) LWT Food Sci Technol 43:837

    Article  CAS  Google Scholar 

  191. Vartiainen J, Motion R, Kulonen H, Rättö M, Skyttä E, Ahvenainen R (2004) J Appl Polym Sci 94:986

    Article  CAS  Google Scholar 

  192. Irshad A, Sharma BD (2015) J Anim Prod Adv 5:681

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by The Research Council of Norway under funding program BIONÆR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Virtanen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virtanen, S., Chowreddy, R.R., Irmak, S. et al. Food Industry Co-streams: Potential Raw Materials for Biodegradable Mulch Film Applications. J Polym Environ 25, 1110–1130 (2017). https://doi.org/10.1007/s10924-016-0888-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0888-y

Keywords

Navigation