Skip to main content
Log in

Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for all the mechanical properties analyzed. The corona discharge treatment increased impact strength and tensile strength of the composites, and decreased water absorption. SEM images showed that the surface activation generally improved the interfacial adhesion between fibers and polyester matrix. Corona treatment may depolymerize the lignocellulosic material and smaller fragments may actually help increase the interaction with the polyester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang H, Lee LJ (2001) J Appl Polym Sci 79:1230

    Article  CAS  Google Scholar 

  2. Alsina OLS, Carvalho LH, Ramos FFG, Almeida JRM (2005) Polym Test 24:81

    Article  CAS  Google Scholar 

  3. Ren X, Li K (2013) Investigation of vegetable-oil-based coupling agents for kenaf-fiber-reinforced unsaturated polyester composites. J Appl Polym Sci 128(2):1101–1109

    Article  CAS  Google Scholar 

  4. Callister WD Jr (2002) Materials science and engineering: an introduction, 5th edn. LTC, Rio de Janeiro

    Google Scholar 

  5. Raghu K, Kahanam PN, Naidu SV (2010) Chemical resistence studies of silk/sisal fiber-reinforced unsaturade polyester-based hybrid composites. J Reinf Plast Compos 29(3):343–345

    Article  CAS  Google Scholar 

  6. Macvicar R, Matuana LM, Balatinecz JJ (1999) Aging mechanism in cellulose fiber reinforced cement composites. Cem Concr Compos 21:89–96

    Article  Google Scholar 

  7. Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444

    Article  CAS  Google Scholar 

  8. Ayrilmis N, Jarusombuti S, Fuengvivat V, Bauchongkol P (2011) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym Degrad Stab 96:818–822

    Article  CAS  Google Scholar 

  9. Hosseinaei O, Wang S, Taylor AM, Kim JW (2012) Effect of hemicelluloses extraction on water absorption and mold susceptibility of wood-plastic composites. Int Biodeterior Biodegrad 7:29–35

    Article  Google Scholar 

  10. Carvalho LH, Cavalcanti WS (2006) Properties of polyester/hibrid sisal-glass fabrics. Polim Sci Technol 16(1):33–37

    Google Scholar 

  11. Joseph K, Medeiros ES, Carvalho LH (1999) Polyester matrix composites reinforced by short fibers sisal. Sci Technol, Polim, pp 136–141

    Google Scholar 

  12. Vieira CAB, Mondadore NML, Freire E, Amico SC, Zattera AJ (2009) Interference wash performance fibers on the mechanical properties of sizing hybrid composite glass/sisal. J Iber Am Polym 10(4):222–234

    Google Scholar 

  13. Teixeira RS, Tonoli GHD, Santos SF, Savastano H Jr, Protásio TP, Toro EF, Maldonado J, Lahr FAR, Delvasto S (2014) Different ageing conditions on cimentitious roofing tiles reinforced with alternative vegetable and synthetic fibres. Mater Struct 47(3):433–446

    Article  CAS  Google Scholar 

  14. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43(17):1791–1802

    Article  CAS  Google Scholar 

  15. Ramesh M, Palanikumar K, Hemachandr RK (2013) Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Compos B 48:1–9

    Article  CAS  Google Scholar 

  16. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863

    Article  CAS  Google Scholar 

  17. Cruz VCA, Nóbrega MMS, Silva WP, Carvalho LH, Lima AGB (2011) An experimental study of water absorption in polyester composites reinforced with macambira natural fiber. Materialwissenschaft und Werkstofftechnik 42(11):979–984

    Article  CAS  Google Scholar 

  18. Akil HM, Cheng LW, Ishak ZM, Bakar AA, Rahman MA (2009) Compos Sci Technol 69:1942

    Article  CAS  Google Scholar 

  19. Law TT, Ishak ZM (2011) J Appl Polym Sci 120:563

    Article  CAS  Google Scholar 

  20. Mehta G, Mohanty AK, Misra M, Drzal LTJ (2004) Mater Sci 39:2961

    Article  CAS  Google Scholar 

  21. Benítez AN, Monzón MD, Angulo I, Ortega Z, Hernandez PM, Marrero MM (2013) Treatment of banana fiber for use in the reinforcement of polymeric matrices. Measurement 46:1065–1073

    Article  Google Scholar 

  22. Garkhail SK, Heijenrath RWH, Peijs T (2000) Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene. Appl Compos Mater 5:351–372

    Article  Google Scholar 

  23. Pasquini D, Belgacem MN, Gandini A, Curvelo AAS (2006) Surface esterification of celulose fibers: characterization by DRIFT and contect angle measurements. J Colloid Interface Sci 295:79–83

    Article  CAS  Google Scholar 

  24. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A 42:1189–1196

    Article  Google Scholar 

  25. Belgacem MN, Bataille P, Sapieha S (1994) Effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53:379–385

    Article  CAS  Google Scholar 

  26. Li X, Tabil lG, Panagrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  27. Aziz SH, Ansell MP (2004) J Compos Sci Technol 64:1219

    Article  CAS  Google Scholar 

  28. Cho D, Lee HS, Han SO (2009) Compos Interface 16:711

    Article  CAS  Google Scholar 

  29. Ren X, Qiu R, Li K (2012) J Appl Polym Sci 125:2846

    Article  CAS  Google Scholar 

  30. Ren X, Qiu R, Fifield LS, Simmons KL, Li K (2012) Effects of surface treatments on mechanical properties and water resistance of kenaf fiber-reinforced unsaturated polyester composites. J Adhes Sci Technol 26(18–19):2277–2289

    CAS  Google Scholar 

  31. Uehara T, Sakata I (1990) Effect of corona discharge treatment on cellulose prepared from beech wood. J Appl Polym Sci 41:1695–1706

    Article  CAS  Google Scholar 

  32. Dong S, Sapieha S, Schreiber HP (1993) Mechanical properties of corona-modified cellulose/polyethylene. Polym Eng Sci 33(6):343–346

    Article  CAS  Google Scholar 

  33. Ooi SK, Vanderhoek N, Morrison R, Bauer A (2004) Atmospheric plasma treatment (APT), understanding the basics. In: Appita annual conference, pp 407–412

  34. Seto F, Muraoka Y, Akagi T, Kishida A, Akashi M (1999) Surface grafting of poly(vinylamine) onto poly(ethylene) film by corona discharge-induced grafting. J Appl Polym Sci 72:1583–1587

    Article  CAS  Google Scholar 

  35. Bataille P, Dufourd M, Sapieha S (1994) Copolymerization of styrene onto cellulose activated by corona. Polym Int 34:387–391

    Article  CAS  Google Scholar 

  36. Benhadi S, Ragoubi M, Joly J-P, Molina S, George B, Brosse N (2011) Corona discharge treatment route for the grafting of modified β-cyclodextrin molecules onto cellulose. J Incl Phenom Macrocycl Chem 70:143–152

    Article  CAS  Google Scholar 

  37. Mihailovic´ D, Saponjic´ Z, Radoicic´ M, Lazovic´ S, Baily CJ, Jovancic´ P, Nedeljkovic´ J, Radetic M (2011) Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles. Cellulose 18:811–825

    Article  Google Scholar 

  38. Lei J, Shi M, Zhang J (2000) Surface graft copolymerisation of hydrogen silicone fluid onto fabrics through corona discharge and water repellency of grafted fabrics. Eur Polym J 36:1277–1281

    Article  CAS  Google Scholar 

  39. Bataille P, Dufourd M, Sapieha S (1991) Graft polymerization of styrene onto cellulose by corona discharge. Polym Prepr 32:559–560

    CAS  Google Scholar 

  40. Sakata I, Morita M, Tsuruta N, Morita K (1993) J Appl Polym Sci 49:1251

    Article  CAS  Google Scholar 

  41. International Association of Wood Anatomists (1989) Iawa list of microscopic features for hardwood identification. Bulletin IAWA, Leiden

    Google Scholar 

  42. Fonseca AS, Mori FA, Tonoli GHD, Jr Savastano, Ferrari DL, Miranda IPA (2013) Properties of an Amazonian vegetable fiber as a potential reinforcing material. Ind Crops Prod 47:43–50

    Article  CAS  Google Scholar 

  43. Paula JE, Alvez JLH (1989) Anatomical study of native woods suitable for energy and paper production. Braz Res Agric 24(12):1461–1471

    Google Scholar 

  44. Paula JE (1993) Woods from the caatinga, suitable for energy production. Braz Res Agric 28(2):153–165

    Google Scholar 

  45. ABTCP (1974) Technical standards. ABCP, São Paulo

    Google Scholar 

  46. Valadez-Gonzales A, Cervantes-UC JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B Eng 30(3):309–320

    Article  Google Scholar 

  47. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  48. ASTM Standard D-638 (2003) Standart test method for tensile properties of plastics. ASTM International, West Conshohocken

    Google Scholar 

  49. ASTM Standard D-790 (2000) Standart test methods for bending properties of unreinforced and reinforced plastics and electrical insulaling materials. ASTM International, West Conshohocken

    Google Scholar 

  50. ASTM Standard D-256 (2010) Standard test methods for determining the Izod pendulum impact resistance of plastics. ASTM International, West Conshohocken

    Google Scholar 

  51. ASTM Standard D-570 (1998) Standard test method for water absorption on plastics. ASTM International, West Conshohocken

    Google Scholar 

  52. Guimarães M Jr, Novack KM, Botaro VR (2010) Anatomical characterization of fiber bamboo (Bambusa vulgaris) for their use in polymer composites. J Iber Am Polym 11(7):442–456

    Google Scholar 

  53. Nisgoski S (2005) Near infrared spectroscopy in the study of characterization of wood and paper Pinus taeda L. Ph.D. Thesis, Federal University of Parana

  54. Paula JE (1995) Anatomy and dendrometry of Mimosa artemisiana and Eucalyptus grandis. Braz Res Agric 30(6):745–757

    Google Scholar 

  55. Guimarães M Jr, Novack KM, Botaro VR, Protásio TP (2012) Characterization of Bamboo Pulp chemically modified in order to improve the interfacial interactions in their applications in composites. J Iber Am Polym 13(3):89–102

    Google Scholar 

  56. Sanchez EMS, Cavani CS, Leal CV, Sanchez CG (2010) Unsaturated polyester resin composite with sugar cane bagasse: influence of treatment on the fibers properties. Polimeros 20(3):194–200

    CAS  Google Scholar 

  57. Hillig E, Iwakiri S, Andrade MZ, Zattera AJ (2008) Characterization of composites made from high density polythylene (HDPE) and furniture industry sawdust. Tree J 32(2):299–310

    CAS  Google Scholar 

  58. Sathishkumar TP, Navaneeltakrishnan P, Shankar S (2012) Tensile and flexural properties as snake grass natural fiber reinforced isophthallic polyster composites. Compos Sci Technol 72:1183–1190

    Article  CAS  Google Scholar 

  59. Gutowski WVS, Wu DY, Li S (1993) J Adhes 43:139

    Article  CAS  Google Scholar 

  60. Gassan J, Bledzki AK (1999) J Appl Polym Sci 71:623

    Article  CAS  Google Scholar 

  61. Rout J, Nayak S, Misra M, Mohanty AK (2001) J Appl Polym Sci 79:1169

    Article  CAS  Google Scholar 

  62. Kalyana S, Sundaram S, Jayabal, Nijandhan K (2015) Influence of fiber pretreatment on the mechanical properties of dharbai fiber reinforced polyester composites. Cellul Chem Technol 49(1):61–64

    Google Scholar 

  63. Zheng Z, Tang X, Shi M, Zhou G (2003) A study of the influence of controlled corona treatment on UHMWPE fibres in reinforced vinylester composites. Polym Int 52:1833–1838

    Article  CAS  Google Scholar 

  64. Walzak MJ, Flynn S, Foersch R, Hill JM, Karbashewski E, Lin A, Strobel M (1995) J Adhes Sci Technol 9(9):1229

    Article  CAS  Google Scholar 

  65. Li X, Cai Z, Winandy JE, Basta AH (2011) Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Ind Crops Prod 33:665–669

    Article  Google Scholar 

  66. Zadorecki P, Flodin P (1986) Properties of cellulose-polyester composites. Polym Compos 7(3):170–175

    Article  CAS  Google Scholar 

  67. Shebani AN, Van Reenem AJ (2009) The effect of wood species on the mechanical and thermal properties of wood-LLDPE composites. J Compos Mater 43(11):1305–1318

    Article  CAS  Google Scholar 

  68. Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 11:145–157

    Article  Google Scholar 

  69. Ward TL, Jung HZ, Hinojosa O, Benerito RR (1979) Characterization and use of radio frequency plasma-activated natural polymers. J Appl Polym Sci 23:1987–2003

    Article  CAS  Google Scholar 

  70. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle of cotton surface oxidation by catalytic bleaching. Colloid Surf A 296:76–85

    Article  CAS  Google Scholar 

  71. Park M, Kim HY, Jin FL, Lee SY, Choi HS, Park SJ (2014) Combined effect of corona discharge and enzymatic treatment on the mechanical and surface properties of wool. J Ind Eng Chem 20:179–183

    Article  CAS  Google Scholar 

  72. Tourrette O, De Geyterb N, Jocic D, Morent R, Warmoeskerken MMCG, Leys C (2009) Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloid Surf A 352:126–135

    Article  CAS  Google Scholar 

  73. Uner B (2009) The effect of support media on corona treated paper sorption properties. Sci Res Essay 4(10):1024–1030

    Google Scholar 

Download references

Acknowledgments

Authors thank to Universidade Federal de Lavras (UFLA) for supporting the experimental work, and also thank the financial support granted by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). Thanks also to Fibrasil Indústria e Comércio Ltda. (Lavras/MG, Brazil), PGCTM (UFLA), LME (UFLA) and Brazilian Research Network in Lignocellulosic Composites and Nanocomposites – RELIGAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Henrique Denzin Tonoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, R.G.A., César, A.A.S., Mendes, R.F. et al. Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse. J Polym Environ 25, 800–811 (2017). https://doi.org/10.1007/s10924-016-0864-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0864-6

Keywords

Navigation