Skip to main content
Log in

Assessing the Potential of Farm Dairy Effluent as a Filler in Novel PLA Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The migration from the concept of waste streams to untapped side streams has meant that by-products from industrial processes are being investigated as sustainable resources. As a side stream containing cellulosic fibre, the influence of integrating farm dairy effluent (FDE) in polylactic acid (PLA) was investigated and compared with wood sander dust (SD). The mechanical and thermal properties of injection moulded specimens were evaluated as a function of filler type. The investigation indicated that FDE had similar density to SD but a lower stiffness attributed to the presence of proteins and the lesser amount of cellulose. The Young’s moduli of the FDE composites were higher than the neat PLA, however, the tensile strength generally decreased but remained comparable to those filled with SD. Thermo-mechanical analysis indicated an improvement in the storage modulus of all composites containing 40 wt% of either filler above the glass transition temperature of PLA. Tensile testing of specimens that were exposed to accelerated weathering indicated a faster decrease in properties for the FDE composites compared to those filled with SD. The FDE composites degraded at least twice as fast as neat PLA and SD composites, which was tentatively attributed to the acids (e.g. fatty and amino-acids) contained in FDE and not present in SD. These findings revealed that using extrusion and injection moulding processes, FDE has potential as a composite filler from an improved stiffness and UV accelerated degradation perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Houlbrooke DJ, Horne DJ, Hedley MJ, Hanly JA, Snow VO (2004) NZ J Agric Res 47:499–511

    Article  CAS  Google Scholar 

  2. Irshad M, Eneji AE, Hussain Z, Ashraf M (2013) J Soil Sci Plant Nutr 13:115–121

    Google Scholar 

  3. Longhurst RD, Roberts AHC, O’Connor MB (2000) NZ J Agric Res 43:7–14

    Article  Google Scholar 

  4. Hong CK, Wool RP (2004) J Appl Polym Sci 95:1524–1538

    Article  Google Scholar 

  5. Ghanbarzadeh B, Oromiehi AR (2008) Int J Biol Macromol 43:209–215

    Article  CAS  Google Scholar 

  6. Ayrilmis N, Kaymakci A (2013) Ind Crop Prod 43:457–464

    Article  CAS  Google Scholar 

  7. Berthet M-A, Angellier-Coussy H, Machado D, Hilliou L, Staebler A, Vicente A, Gontard N (2015) Ind Crop Prod 69:110–122

    Article  CAS  Google Scholar 

  8. Yan L, Chouw N, Jayaraman K (2014) Compos Part B Eng 56:296–317

    Article  CAS  Google Scholar 

  9. Holt GA, Chow P, Wanjura JD, Pelletier MG, Wedegaertner TC (2014) Ind Crop Prod 52:627–632

    Article  CAS  Google Scholar 

  10. Nagarajan V, Mohanty AK, Misra M (2013) ACS Sustain Chem Eng 1:325–333

    Article  CAS  Google Scholar 

  11. Nyambo C, Mohanty AK, Misra M (2010) Biomacromol 11:1654–1660

    Article  CAS  Google Scholar 

  12. Fortunati E, Aluigi A, Armentano I, Morena F, Emiliani C, Martino S, Santulli C, Torre L, Kenny JM, Puglia D (2015) Mater Sci Eng 47:394–406

    Article  CAS  Google Scholar 

  13. Way C, Wu DY, Cram D, Dean K, Palombo E (2014) J Polym Environ 21:54–70

    Article  Google Scholar 

  14. Boronat T, Fombuena V, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R (2015) Mater Des 68:177–185

    Article  CAS  Google Scholar 

  15. Fakhrul T, Islam MA (2013) Proc Eng 56:795–800

    Article  CAS  Google Scholar 

  16. Sedlařík V, Saha N, Kuřitka I, Sáha PJ (2007) Appl Polym Sci 106:1869–1879

    Article  Google Scholar 

  17. Tisserat B, Finkenstadt VL (2011) J Polym Environ 19:766–775

    Article  CAS  Google Scholar 

  18. Xie L, Xu H, Wang Z-P, Li X-J, Chen J-B, Zhang Z-J, Yin H-M, Zhong G-J, Lei J, Li Z-M (2014) J Polym Res 21:1–15

    Article  CAS  Google Scholar 

  19. Karamanlioglu M, Robson GD (2013) Polym Degrad Stab 98:2063–2071

    Article  CAS  Google Scholar 

  20. Kumar R, Yakubu MK, Anandjiwala RD (2010) Express Polym Lett 4:423–430

    Article  CAS  Google Scholar 

  21. Newman RH, Hemmingson JA, Suckling ID (1993) Holzforschung 47:234–238

    Article  CAS  Google Scholar 

  22. German RM, Park SJ (2009) Handbook of mathematical relations in particulate materials processing. Wiley, New York

    Google Scholar 

  23. Müssig J (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New York

    Book  Google Scholar 

  24. Liao W, Liu Y, Liu C, Chen S (2004) Bioresour Technol 94:33–41

    Article  CAS  Google Scholar 

  25. Page LH, Ni J-Q, Heber AJ, Mosier NS, Liu X, Joo H-S, Ndegwa PM, Harrison JH (2014) Biosyst Eng 118:16–28

    Article  Google Scholar 

  26. Calderón FJ, McCarty GW, Reeves JB III (2006) J Anal Appl Pyrol 76:14–23

    Article  Google Scholar 

  27. Le Guen M-J, Newman RH, Fernyhough A, Hill SJ, Staiger MP (2016) In: Fangueiro R, Rana S (eds) Natural fibres advances in science and technology towards industrial applications: from science to market. Springer, Dordrecht, pp 35–47

    Chapter  Google Scholar 

  28. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  29. Ramesh Babu B, Maruthamuthu S, Rajasekar A, Muthukumar N, Palaniswamy N (2006) Int J Environ Sci Technol 3:159–166

    Article  Google Scholar 

  30. Al-Oweini R, El-Rassy H (2009) J Mol Struct 919:140–145

    Article  CAS  Google Scholar 

  31. Islam MS, Pickering KL, Foreman NJ (2010) Polym Degrad Stab 95:59–65

    Article  CAS  Google Scholar 

  32. Spiridon I, Leluk K, Resmerita AN, Darie RN (2015) Compos Part B Eng 69:342–349

    Article  CAS  Google Scholar 

  33. Newman RH, Thumm A, Clauss EC, Le Guen M-J (2007) Adv Mater Res 29–30:287–290

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Business, Innovation, and Employment funding under High Value Manufacturing and Services (HVMS) Enabling Technologies investment contract, Mr. Don Barbour for providing materials, Dr. Martin Markotsis, Mr. Gildas Lebrun and Mr. Ross Anderson for technical assistance and Mr. James Bridson for his advice in FTIR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Joo Le Guen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Guen, MJ., Thoury-Monbrun, V., Castellano Roldán, J.M. et al. Assessing the Potential of Farm Dairy Effluent as a Filler in Novel PLA Biocomposites. J Polym Environ 25, 419–426 (2017). https://doi.org/10.1007/s10924-016-0824-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0824-1

Keywords

Navigation