Skip to main content
Log in

Effect of Nano-SiO2 and Bark Flour Content on the Physical and Mechanical Properties of Wood–Plastic Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klasnja B, Kopitovic S, Orlovic S (2002) Wood and bark of some poplar and willow clones as fuel wood. Biomass Bioenergy 23(6):427–432

    Article  Google Scholar 

  2. Blanchet P, Cloutier A, Riedl B (2000) Particleboard made from hammer milled black spruce bark residues. Wood Sci Technol 34(1):11–19

    Article  CAS  Google Scholar 

  3. Xing C, Deng J, Zhang SY, Riedl B, Cloutier A (2006) Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada. For Prod J 56(3):64–69

    Google Scholar 

  4. Yemele MCN, Blanchet P, Cloutier A, Koubaa A, Wolcott M (2008) Effects of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce. For Prod J 5(11):58–66

    Google Scholar 

  5. Tsoumis G (1991) Science and technology of wood: structure, properties, utilisation. Van Nostrand Reinhold, Hoboken, p 491

    Google Scholar 

  6. Doosthosseni K (2001) Wood composite materials: manufacturing, applications. Tehran University Press, Tehran, p 648

    Google Scholar 

  7. Yemele MCN, Koubaa A, Cloutier A, Soulounganga P, Wolcott M (2010) Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Compos Part A Appl Sci 41(1):131–137

    Article  Google Scholar 

  8. Harper DP, Eberhardt TL (2010) Evaluation of micron-sized wood and bark particles as filler in thermoplastic composites. Paper presented at 10th international conference on wood & biofiber plastic composites, The Forest Products Society, Madison

  9. Bouafif H, Koubaa A, Perré P, Cloutier A (2009) Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos Part A Appl Sci 40(12):1975–1981

    Article  Google Scholar 

  10. Kazemi Najafi S, Kiaefar A, Tajvidi M (2008) Effect of bark flour content on the hygroscopic characteristics of wood–polypropylene composites. J Appl Polym Sci 110(5):3116–3120

    Article  Google Scholar 

  11. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. A review. Mater Sci Eng R 53(3–4):73–197

    Article  Google Scholar 

  12. Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). A review. J Polym Adv Technol 18(1):1–37

    Article  CAS  Google Scholar 

  13. Nourbakhsh A, Farhani Baghlani F, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical Properties. Ind Crop Prod 33(1):183–187

    Article  CAS  Google Scholar 

  14. Babaei I, Madanipour M, Farsi M, Farajpoor A (2014) Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos Part B Eng 56:163–170

    Article  CAS  Google Scholar 

  15. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

  16. Stojanovic D, Orlovic A, Markovic S, Radmilovic V, Uskokovic PS, Aleksic R (2009) Nanosilica/PMMA composites obtained by the modification of silica nanoparticles in a supercritical carbon dioxide–ethanol mixture. J Mater Sci 44(23):6223–6232

    Article  CAS  Google Scholar 

  17. Motaung TE, Saladino ML, Luyt AS, Martino DFC (2012) The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate. Compos Sci Technol 73:34–39

    Article  CAS  Google Scholar 

  18. Wen L, Yu-he D, Mei ZH, Ling X, Qian F (2006) Mechanical properties of nano Sio2 filled gypsum particleboard. T Nonferr Metal Soc 16(1):361–364

    Google Scholar 

  19. Deka BK, Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70(2):403–417

    Article  CAS  Google Scholar 

  20. Salari A, Tabarsa T, Khazaein A, Saraeian A (2013) Improving some df applid peroperties of oriented strand board (OSB)made from underutilized low quality paulownia (paulownia fortunie) wood employing nano-Sio2. Ind Crop Prod 42:1–9

    Article  CAS  Google Scholar 

  21. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010) Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Compos Part A Appl Sci 41(10):1491–1497

    Article  Google Scholar 

  22. Ashori A, Nourbakhsh A (2010) Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Compos Part B Eng 41(7):578–581

    Article  Google Scholar 

  23. Saputra H, Simonsen J, Li K (2004) Effect of extractives on the flexural properties of wood/plastic composites. Compos Interface 11(7):515–524

    Article  CAS  Google Scholar 

  24. Panthapulakkal S, Sain M (2007) Agro-residue reinforced high-density polyethylene composites: fiber characterization and analysis of composite properties. Compos Part A Appl Sci 38(6):1445–1454

    Article  Google Scholar 

  25. Ashori A (2010) Hybrid composites from waste materials. Polym Environ 18(1):65–70

    Article  CAS  Google Scholar 

  26. Hull D, Clyne TW (1996) An introduction to composite materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Balasuriya PW, Ye L, Mai YW (2001) Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behavior. Compos Part A Appl Sci 32(5):619–629

    Article  Google Scholar 

  28. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72(3):521–526

    Article  CAS  Google Scholar 

  29. Devi RR, Maji TK (2012) Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites. Wood Sci Technol 46(6):1151–1168

    Article  CAS  Google Scholar 

  30. Deka BK, Maji TK (2012) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70(2):403–417

    Article  Google Scholar 

  31. Yang F, Nelson G (2004) PMMA/silica nanocomposite studies: synthesis and properties. J Appl Polym Sci 91(6):3844–3850

    Article  CAS  Google Scholar 

  32. Karakuş K, Güleç T, Kaymakc A, Mengeloğlu F (2010) The utilization of cornstalk flour as filler in the manufacture of polymer composites. Paper presented at 3rd national Blacksea forestry congress, Artvin

  33. Çetina NS, Özmena N, Narlıoğlub N, Çavuşb V (2014) Effect of bark flour on the mechanical properties of HDPE composites. Usak Univ J Mater Sci 1(3):23–32

    Google Scholar 

  34. Safdari V, Khodadadi H, Hosseinihashami SK, Ganjian E (2011) The effects of poplar bark and wood content on the mechanical properties of wood–polypropylene composites. Bioresources 6(4):5180–5192

    CAS  Google Scholar 

  35. Farsi M, Mashi Sani F (2014) Effects of multi-walled carbon nanotubes on the physical and mechanical properties of high-density polyethylene/wood flour nanocomposites. J Thermoplast Compos 27(8):1139–1154

    Article  Google Scholar 

  36. Hosseini SB, Hedjazi S, Jamalirad L, Sukhtesaraie A (2014) Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J Indian Acad Wood Sci 11(2):116–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsi, M. Effect of Nano-SiO2 and Bark Flour Content on the Physical and Mechanical Properties of Wood–Plastic Composites. J Polym Environ 25, 308–314 (2017). https://doi.org/10.1007/s10924-016-0813-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0813-4

Keywords

Navigation