Skip to main content
Log in

Blending Modification of PHBV/PCL and its Biodegradation by Pseudomonas mendocina

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable polymer synthesized in microorganisms. The application of PHBV is limited by certain material disadvantages. Poly(ε-caprolactone) (PCL) possesses excellent thermodynamic and mechanical properties and was used to modify PHBV in the presence of triethyl citrate (TEC) and dicumyl peroxide (DCP), which was used as plasticizer and grafting agent, respectively. The effects of PCL and additive agents on the mechanical, thermal, amphipathic and degradability behaviors of the blends were investigated. The results showed that the mechanical properties of the PHBV blends improved by PCL incorporation and improved even further after TEC and DCP addition. The addition of DCP could not induce an increase in crystallization temperature but improved the crystallization degree of the blends. The presence of hydrophilic groups in TEC leads to an apparent increases in the hydrophilicity of the PHBV blends. A PHBV/PCL blend (40/60) with TEC (20 wt.%) and DCP (0.5 wt.%) was chosen for its good mechanical properties and hydrophilicity. The chosen ratio of the blends was also shown a preferable degradation activity by biodegradation assay using Pseudomonas mendocina. The addition of TEC and DCP has no conspicuous negative effect on the biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carolina L, Betina MPF, Eliana ARD, Arnaldo RSJ, Paulo PJ (2008) J Mater Sci Mater Med 19:635–643

    Article  Google Scholar 

  2. Meng W, Xing ZC, Jung KH, Kim SY, Yuan J, Kang IK, Sung CY, Hong ISJ (2008) J Mater Sci Mater Med 19:2799–2807

    Article  CAS  Google Scholar 

  3. Avella M, Martuscelli E, Raimo M (2000) J Mater Sci 35:523–545

    Article  CAS  Google Scholar 

  4. Zhang KY, Amar KM, Misra M (2012) ACS Appl Mater Interfaces 4:3091–3101

    Article  CAS  Google Scholar 

  5. Wang BJ, Zhang YJ, Zhang JQ, Gou QT, Wang ZB, Chen P, Gu Q (2013) Chin J Polym Sci 3:670–678

    Article  Google Scholar 

  6. Yottha S, Thomas E, Jun P, Ronald S, Craig C, Turng LS, Srikanth P (2013) Polym Degrad Stab 98:1439–1449

    Article  Google Scholar 

  7. Jost V, Langowski HC (2015) Eur Polym J 68:302–312

    Article  CAS  Google Scholar 

  8. Li X, Loh XJ, Wang K, He CB, Li J (2015) Biomacromolecules 6:2740–2747

    Article  CAS  Google Scholar 

  9. Ma PM, Denka GHB, Lemstra PJ, Zhang Y, Wang SF (2012) Macromol Mater Eng 297:402–410

    Article  CAS  Google Scholar 

  10. Wang S, Ma PM, Wang RY, Wang SF, Zhang Y, Zhang YX (2008) Polym Degrad Stab 93:1364–1369

    Article  CAS  Google Scholar 

  11. Pierre L, Estelle R, Jean G, Christelle SC, Valerie L (2012) React Funct Polym 72:487–494

    Article  Google Scholar 

  12. Hala FN, Mohamed SAA, Sherif MS, Gamal RS (2011) J Polym Res 18:1217–1227

    Article  Google Scholar 

  13. Khodaverdi E, Heidari Z, Tabassi SAS, Tafaghodi M, Alibolandi M, Tekie FSM, Khameneh B, Hadizadeh F (2015) AAPS Pharm Sci Tech 16:140–149

    Article  CAS  Google Scholar 

  14. Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) Int J Biol Macromol 85:63–73

    Article  CAS  Google Scholar 

  15. Liu QS, Zhu MF, Chen YM (2010) Polym Int 59:842–550

    Google Scholar 

  16. Li X, Loh XJ, Wang K, He CB, Li J (2005) Biomacromolecules 6:2740–2747

    Article  CAS  Google Scholar 

  17. Jia L, Yin LZ, Li Y, Li QB, Yang J, Yu JY, Shi Z, Fang Q, Cao AM (2005) Macromol Biosci 5:526–538

    Article  CAS  Google Scholar 

  18. Dekoning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H (1994) Polymer 35:4598–4605

    Article  CAS  Google Scholar 

  19. Francisco REC, Suzan AC, Jose AMA (2013) J Polym Environ 21:789–794

    Article  Google Scholar 

  20. Liu QS, Shyr TW, Tung CH, Zhu MF, Deng BY (2011) Macromol Res 19:1220–1223

    Article  CAS  Google Scholar 

  21. Xiang HX, Wang SC, Wang RL, Zhou Z, Peng C, Zhu MF (2013) Sci China Chem 56:716–723

    Article  CAS  Google Scholar 

  22. Zhao HB, Cui ZX, Wang XF, Turng LS, Peng XF (2013) Compos B 51:79–91

    Article  CAS  Google Scholar 

  23. Nagarajan V, Misra M, Mohanty AK (2013) Ind Crop Prod 42:461–468

    Article  CAS  Google Scholar 

  24. Guan Q, Naguib HE (2014) J Polym Environ 22:119–130

    Article  CAS  Google Scholar 

  25. Badia JD, Kittikorn T, Strömberg E, Santonja-Blasco L, Martínez-Felipe A, Ribes-Greus A, Ek M, Karlsson S (2014) Polym Degrad Stab 108:166–174

    Article  CAS  Google Scholar 

  26. Mao HL, Jiang HS, Su TT, Wang ZY (2013) Biotechnol Lett 35:1919–1924

    Article  CAS  Google Scholar 

  27. Wang ZY, Lin XD, An J, Ren C, Yan X (2013) Polym Plast Technol Eng 52:195–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 31100099 and 31570097) and Program for Liaoning Excellent Talents in University (Grant No. LJQ2014040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gao, Z., Hu, X. et al. Blending Modification of PHBV/PCL and its Biodegradation by Pseudomonas mendocina . J Polym Environ 25, 156–164 (2017). https://doi.org/10.1007/s10924-016-0795-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0795-2

Keywords

Navigation