Skip to main content
Log in

Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrogels were synthesized by free radical graft copolymerization of itaconic acid (IA) onto corn starch (S-g-IA). For this purpose, potassium permanganate (KMnO4)-sodium bisulfite (NaHSO3) was used as redox initiation system. The formation of grafted starches was confirmed by Fourier transform infrared spectroscopy, wide angle X-ray scattering, thermogravimetric analysis and scanning electron microscopy. The effect of monomer concentration, neutralization, addition of crosslinking agent, N,N-bismetilenacrilamide (MBAm), and initiator concentration on grafting efficiency and adsorption capacity of the starch hydrogels was investigated. It was demonstrated that the introduction of carboxyl and carbonyl groups promoted starch hydration and swelling. Grafting degree increased with the decrease of monomer concentration, increase of initiator concentration, grade of neutralization and the addition of MBAm without neutralization. Remarkably the resulting materials exhibited water absorption capacities between 258 and 1878% and the ability to adsorb metal ions. It was experimentally confirmed the metal uptake, obtaining the higher adsorption capacity (q e  = 35 mg/g) for the product prepared with the pre-oxidation and lower initiator concentration. The removal capacity order was Pb2+>Ni2+>Zn2+>Cd2+. Moreover, the experimental kinetic and the equilibrium adsorption data for Ni2+ and Pb2+ were best fitted to the pseudo-second order and Freundlich isotherm models, respectively. This work describes for the first time the preparation of metal removal hydrogels based on starch and itaconic acid using the pair redox system KMnO4/NaHSO3, which avoids the starch hydrolysis and allows itaconic acid grafting incorporation without the requirement of more reactive comonomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31

    Article  CAS  Google Scholar 

  2. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  3. Bayramoglu G, Denizli A, Bektas S, Yakup Arica M (2002) Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72(1):63–76

    Article  CAS  Google Scholar 

  4. Vandenbossche M, Jimenez M, Casetta M, Traisnel M (2015) Remediation of heavy metals by biomolecules: a review. Crit Rev Environ Sci Technol 45(15):1644–1704

    Article  CAS  Google Scholar 

  5. Bhat MA, Chisti H, Shah SA (2015) Removal of heavy metal ions from water by cross-linked potato di-starch phosphate polymer. Sep Sci Technol 50(12):1741–1747

    Article  CAS  Google Scholar 

  6. Varghese LR, Das N (2015) Removal of Hg (II) ions from aqueous environment using glutaraldehyde crosslinked nanobiocomposite hydrogel modified by TETA and β-cyclodextrin: optimization, equilibrium, kinetic and ex situ studies. Ecol Eng 85:201–211

    Article  Google Scholar 

  7. Kandile NG, Mohamed HM, Mohamed MI (2015) New heterocycle modified chitosan adsorbent for metal ions (II) removal from aqueous systems. Int J Biol Macromol 72:110–116

    Article  CAS  Google Scholar 

  8. Jin SP, Wang YS, He JF, Yang Y, Yu XH, Yue GR (2013) Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer. J Appl Polym Sci 128(1):407–415

    Article  CAS  Google Scholar 

  9. Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35(1):47–66

    Article  CAS  Google Scholar 

  10. Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39(2):151–165

    Article  CAS  Google Scholar 

  11. Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch–a review. Compr Rev Food Sci Food Saf 5(1):1–17

    Article  CAS  Google Scholar 

  12. Nair SB, Jyothi AN (2014) Cassava starch-graft-polymethacrylamide copolymers as flocculants and textile sizing agents. J Appl Polym Sci 131(2):11

    Article  Google Scholar 

  13. BeMiller JN, Whistler RL (eds) (2009) Starch: chemistry and technology, vol 3. Academic Press, London

    Google Scholar 

  14. Wang YJ, Jiang L, Duan JK, Shao SX (2013) Effect of the carbonyl content on the properties of composite films based on oxidized starch and gelatin. J Appl Polym Sci 130(5):3809–3815

    Article  CAS  Google Scholar 

  15. Lu QL, Gao P, Zhi H, Zhao HY, Yang YP, Sun BW (2013) Preparation of Cu(II) ions adsorbent from acrylic acid-grafted corn starch in aqueous solutions. Starch-Starke 65(5–6):417–424

    Article  CAS  Google Scholar 

  16. Zhang L, Gao J, Tian R, Yu J, Wang W (2003) Graft mechanism of acrylonitrile onto starch by potassium permanganate. J Appl Polym Sci 88(1):146–152

    Article  CAS  Google Scholar 

  17. Lu S, Duan M, Lin S (2003) Synthesis of superabsorbent starch-graft-poly(potassium acrylate-co-acrylamide) and its properties. J Appl Polym Sci 88(6):1536–1542

    Article  CAS  Google Scholar 

  18. Liu Y, Wang W, Wang A (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259(1–3):258–264

    Article  CAS  Google Scholar 

  19. Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels. Desalination 263(1–3):170–175

    Article  CAS  Google Scholar 

  20. Abd El-Rehim HA, Diaa DA (2012) Radiation-induced eco-compatible sulfonated starch/acrylic acid graft copolymers for sucrose hydrolysis. Carbohydr Polym 87(3):1905–1912

    Article  CAS  Google Scholar 

  21. Tay SH, Pang SC, Chin SF (2012) Facile synthesis of starch-maleate monoesters from native sago starch. Carbohydr Polym 88(4):1195–1200

    Article  CAS  Google Scholar 

  22. Kaur I, Sharma M (2012) Synthesis and characterization of graft copolymers of Sago starch and acrylic acid. Starch-Starke 64(6):441–451

    Article  CAS  Google Scholar 

  23. Guo Q, Wang Y, Fan Y, Liu X, Ren S, Wen Y, Shen B (2015) Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohydr Polym 117:247–254

    Article  CAS  Google Scholar 

  24. Hu Y, Tang M (2015) Synthesis of starch-g-lactic acid copolymer with high grafting degree catalyzed by ammonia water. Carbohydr Polym 118:79–82

    Article  CAS  Google Scholar 

  25. Zhu B, Ma D, Wang J, Zhang S (2015) Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydr Polym 133:448–455

    Article  CAS  Google Scholar 

  26. Selling G, Utt K, Finkenstadt V, Kim S, Biswas A (2015) Impact of solvent selection on graft co-polymerization of acrylamide onto starch. J Polym Environ 23(3):294–301

    Article  CAS  Google Scholar 

  27. Naguib HF (2002) Chemically induced graft copolymerization of itaconic acid onto sisal fibers. J Polym Res 9(3):207–211

    Article  CAS  Google Scholar 

  28. Sabaa MW, Mokhtar SM (2002) Chemically induced graft copolymerization of itaconic acid onto cellulose fibers. Polym Test 21(3):337–343

    Article  CAS  Google Scholar 

  29. Işıklan N, Kurşun F, İnal M (2010) Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr Polym 79(3):665–672

    Article  Google Scholar 

  30. Milosavljević NB, Ristić MĐ, Perić-Grujić AA, Filipović JM, Štrbac SB, Rakočević ZL, Kalagasidis Krušić MT (2010) Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chem Eng J 165(2):554–562

    Article  Google Scholar 

  31. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66(2):229–245

    Article  CAS  Google Scholar 

  32. Xiao CM, Huang L (2013) Tailor-made starch-based gels bearing highly acidic groups. Starch-Starke 65(3–4):360–365

    Article  CAS  Google Scholar 

  33. Soto D, Urdaneta J, Pernia K, Leon O, Munoz-Bonilla A, Fernandez-Garcia M (2015) Heavy metal (Cd2+, Ni2+, Pb2+ and Ni2+) adsorption in aqueous solutions by oxidized starches. Polym Adv Technol 26(2):147–152

    Article  CAS  Google Scholar 

  34. Soto D, Urdaneta J, Pernía K, León O, Muñoz-Bonilla A, Fernandez-García M (2015) Removal of heavy metal ions in water by starch esters. Starch-Stärke 67:1–10

    Article  Google Scholar 

  35. Kiatkamjornwong S, Chomsaksakul W, Sonsuk M (2000) Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat Phys Chem 59(4):413–427

    Article  CAS  Google Scholar 

  36. Hebeish A, El-Rafie MH, El-Sisi F, Abdel Hafiz S, Abdel-Rahman AA (1994) Oxidation of maize and rice starches using potassium permanganate with various reductants. Polym Degrad Stab 43(3):363–371

    Article  CAS  Google Scholar 

  37. Hebeish A, Abd El-Thalouth I, El-Kashouti MA, Abdel-Fattah SH (1979) Graft copolymerization of acrylonitrile onto starch using potassium permanganate as initiator. Angew Makromol Chem 78(1):101–108

    Article  CAS  Google Scholar 

  38. Zhang L-M, Chen D-Q (2001) Grafting of 2-(Dimethylamino)ethyl methacrylate onto potato starch using potassium permanganate/sulfuric acid initiation system. Starch-Stärke 53(7):311–316

    Article  CAS  Google Scholar 

  39. Zhang B, Zhou Y (2008) Synthesis and characterization of graft copolymers of ethyl acrylate/acrylamide mixtures onto starch. Polym Compos 29(5):506–510

    Article  Google Scholar 

  40. Valls C, Rojas C, Pujadas G, Garcia-Vallve S, Mulero M (2012) Characterization of the activity and stability of amylase from saliva and detergent: laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents. Biochem Mol Biol Educ 40(4):254–265

    Article  CAS  Google Scholar 

  41. Chattopadhyay S, Singhal RS, Kulkarni PR (1997) Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications. Carbohydr Polym 34(4):203–212

    Article  CAS  Google Scholar 

  42. Mostafa KM (1995) Graft polymerization of methacrylic acid on starch and hydrolyzed starches. Polym Degrad Stab 50(2):189–194

    Article  CAS  Google Scholar 

  43. Smith R (1967) Production and use of hypochlorite oxidized starches. Starch: chemistry and technology, vol 2. Academic Press, New York

    Google Scholar 

  44. Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 Polym Phys 7(10):1761–1773

    Article  CAS  Google Scholar 

  45. Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Novel sulfobetaine-sulfonic acid-contained superswelling hydrogels. Polym Adv Technol 16(9):659–666

    Article  CAS  Google Scholar 

  46. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  47. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50(14):3912–3918

    Article  CAS  Google Scholar 

  48. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36(4):277–284

    Article  CAS  Google Scholar 

  49. Xie W, Shao L, Liu Y (2010) Synthesis of starch esters in ionic liquids. J Appl Polym Sci 116(1):218–224

    Article  CAS  Google Scholar 

  50. Zhang Y-R, Wang X-L, Zhao G-M, Wang Y-Z (2012) Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym 87(4):2554–2562

    Article  CAS  Google Scholar 

  51. Nuñez-Santiago C, Garcia-Suarez FJL, Roman-Gutierrez AD, Bello-Pérez LA (2010) Effect of reagent type on the acetylation of barley and maize starches. Starch-Stärke 62(9):489–497

    Article  Google Scholar 

  52. Xie W, Zhang Y, Liu Y (2011) Homogenous carboxymethylation of starch using 1-butyl-3-methylimidazolium chloride ionic liquid medium as a solvent. Carbohydr Polym 85(4):792–797

    Article  CAS  Google Scholar 

  53. Zuo Y, Gu J, Yang L, Qiao Z, Tan H, Zhang Y (2013) Synthesis and characterization of maleic anhydride esterified corn starch by the dry method. Int J Biol Macromol 62:241–247

    Article  CAS  Google Scholar 

  54. Chauhan GS, Kumar R, Verma M (2007) A study on the sorption of NO3− and F on the carboxymethylated starch-based hydrogels loaded with Fe2+ ions. J Appl Polym Sci 106(3):1924–1931

    Article  CAS  Google Scholar 

  55. Singh A, Nath L (2012) Synthesis, characterization, and compatibility study of acetylated starch with lamivudine. J Therm Anal Calorim 108(1):307–313

    Article  CAS  Google Scholar 

  56. Cyras VP, Tolosa Zenklusen MC, Vazquez A (2006) Relationship between structure and properties of modified potato starch biodegradable films. J Appl Polym Sci 101(6):4313–4319

    Article  CAS  Google Scholar 

  57. Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Stärke 56(3–4):89–99

    Article  CAS  Google Scholar 

  58. Sandhu KS, Kaur M, Singh N, Lim S-T (2008) A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT-Food Sci Technol 41(6):1000–1010

    Article  CAS  Google Scholar 

  59. Sujka M, Jamroz J (2009) α-Amylolysis of native potato and corn starches–SEM, AFM, nitrogen and iodine sorption investigations. LWT-Food Sci Technol 42(7):1219–1224

    Article  CAS  Google Scholar 

  60. Gao Y, Wang L, Yue X, Xiong G, Wu W, Qiao Y, Liao L (2014) Physicochemical properties of lipase-catalyzed laurylation of corn starch. Starch-Stärke 66(5–6):450–456

    Article  CAS  Google Scholar 

  61. Sánchez-Rivera MM, Flores-Ramírez I, Zamudio-Flores PB, González-Soto RA, Rodríguez-Ambríz SL, Bello-Pérez LA (2010) Acetylation of banana (Musa paradisiaca L.) and maize (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: partial characterization. Starch-Stärke 62:155–164

    Article  Google Scholar 

  62. Mbougueng PD, Tenin D, Scher J, Tchiégang C (2012) Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J Food Eng 108(2):320–326

    Article  CAS  Google Scholar 

  63. Athawale VD, Lele V (2000) Thermal studies on granular maize starch and its graft copolymers with vinyl monomers. Starch-Stärke 52(6–7):205–213

    Article  CAS  Google Scholar 

  64. Vasques CT, Domenech SC, Severgnini VLS, Belmonte LAO, Soldi MS, Barreto PLM, Soldi V (2007) Effect of thermal treatment on the stability and structure of maize starch cast films. Starch-Stärke 59(3–4):161–170

    Article  CAS  Google Scholar 

  65. Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  66. Soliman AAA, El-Shinnawy NA, Mobarak F (1997) Thermal behaviour of starch and oxidized starch. Thermochim Acta 296(1–2):149–153

    Article  CAS  Google Scholar 

  67. Afolabi TA (2012) Synthesis and physicochemical properties of carboxymethylated bambara groundnut (Voandzeia subterranean) starch. Int J Food Sci Technol 47(3):445–451

    Article  CAS  Google Scholar 

  68. Krušić MK, Filipović J (2006) Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid. Polymer 47(1):148–155

    Article  Google Scholar 

  69. Díez-Peńa E, Quijada-Garrido I, Barrales-Rienda JM (2003) Analysis of the swelling dynamics of cross-linked P(N-iPAAm-co-MAA) copolymers and their homopolymers under acidic medium. A kinetics interpretation of the overshooting effect. Macromolecules 36(7):2475–2483. doi:10.1021/ma021469c

    Article  Google Scholar 

  70. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr Polym 71(4):682–689

    Article  CAS  Google Scholar 

  71. Valencia J, Piérola IF (2002) Swelling kinetics of poly(N-vinylimidazole-co-sodium styrenesulfonate) hydrogels. J Appl Polym Sci 83(1):191–200

    Article  CAS  Google Scholar 

  72. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM (2002) Hydrogen-bonding effects on the dynamic swelling of P(N-iPAAm-co-MAA) copolymers. A case of autocatalytic swelling kinetics. Macromolecules 35(23):8882–8888

    Article  Google Scholar 

  73. Kapusniak J, Siemion P (2007) Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J Food Eng 78(1):323–332

    Article  CAS  Google Scholar 

  74. Bhandari PN, Singhal RS (2002) Studies on the optimisation of preparation of succinate derivatives from corn and amaranth starches. Carbohydr Polym 47(3):277–283

    Article  CAS  Google Scholar 

  75. Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-J (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

    Article  CAS  Google Scholar 

  76. Jain CK, Singhal DC, Sharma MK (2004) Adsorption of zinc on bed sediment of River Hindon: adsorption models and kinetics. J Hazard Mater 114(1–3):231–239

    Article  CAS  Google Scholar 

  77. Prasad MNV, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110(2):277–283

    Article  CAS  Google Scholar 

  78. Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol 43(1):1–8

    Article  CAS  Google Scholar 

  79. Orozco-Guareño E, Santiago-Gutiérrez F, Morán-Quiroz JL, Hernandez-Olmos SL, Soto V, Wdl Cruz, Manríquez R, Gomez-Salazar S (2010) Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels. J Colloid Interface Sci 349(2):583–593

    Article  Google Scholar 

  80. Quintana JR, Valderruten NE, Katime I (1999) Synthesis and swelling kinetics of poly(Dimethylaminoethyl acrylate methyl chloride quaternary-co-itaconic acid) hydrogels. Langmuir 15(14):4728–4730

    Article  CAS  Google Scholar 

  81. Jeon C, Höll WH (2004) Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy 71(3–4):421–428

    Article  CAS  Google Scholar 

  82. Plazinski W, Dziuba J, Rudzinski W (2013) Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 19(5):1055–1064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thanks Consejo de Desarrollo Científico y Tecnológico (CONDES) of Universidad del Zulia for the financial support (Project VAC-CONDES-CC-0136-14). A. Muñoz-Bonilla thanks MINECO for her Ramon y Cajal contract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Orietta León or Marta Fernández-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, D., Urdaneta, J., Pernia, K. et al. Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics. J Polym Environ 24, 343–355 (2016). https://doi.org/10.1007/s10924-016-0780-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0780-9

Keywords

Navigation