Skip to main content
Log in

Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  2. Weyland M, Daro A, David C (1995) Polym Degrad Stab 48:275–289

    Article  Google Scholar 

  3. Jakubowicz I (2003) Polym Degrad Stab 80:39–43

    Article  CAS  Google Scholar 

  4. Koutny M, Sancelme M, Dabin C, Pichon N, Delort A-M, Lemaire J (2006) Polym Degrad Stab 91:1496–1503

    Google Scholar 

  5. Kawai F, Watanabe M, Shibata M, Yokoyama S, Sudate Y, Hayashi S (2004) Polym Degrad Stab 86:105–114

    Article  CAS  Google Scholar 

  6. Muller R (2003) Synthèse du projet européen SMT sur la biodégradabilité des matériaux

  7. Bewa H (2005) Biodégradabilité et matériaux polymers biodegradables. Note de synthèse ADEME. http://www2.ademe.fr/servlet/getBin?name=8E9C123D5A10CF6479D7A6AABEEE91641140709716872.pdf

  8. Avérous L (2004) J Macromol Sci 44:231–274

    Article  Google Scholar 

  9. Gandini A (2011) Green Chem 13:1061–1083

    Article  CAS  Google Scholar 

  10. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnol Adv 25:148–175

    Article  CAS  Google Scholar 

  11. Lunt J (1998) Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  12. Edlund U, Albertson A-C (2003) Adv Drug Deliv Rev 55:585–609

    Article  CAS  Google Scholar 

  13. Wolf O, Crank M, Patel M, Marscheider-Weidermann F, Schleich J, Husing B, Angerer G (2005) Techno-economic feasibility of large-scale production of bio-based polymers in Europe. Polylactic acid (PLA). European Science and Technology Observatory, EUR 22103 EN, pp 50-64

  14. Roumanet P-J, Laflèche F, Jarroux N, Raoul Y, Claude S, Guégan Ph (2013) Eur Polym J 49:813–822

    Article  CAS  Google Scholar 

  15. Fradet A, Maréchal E (1982) Adv Polym Sci 43:51–142

    Article  CAS  Google Scholar 

  16. Fradet A, Tessier M (2003) Polyesters. In: Rogers ME, Long TE (eds) Synthetic methods in step-growth polymers. Wiley, Hoboken, pp 17–132

    Chapter  Google Scholar 

  17. Jaeger KE, Eggert T (2002) Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  18. Hasan F, Shah AA, Hameed A (2006) Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  19. Lucas N, Bienaime C, Belloy C (2008) Chemosphere 73:429–442

    Article  CAS  Google Scholar 

  20. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  21. Da Silva G, Mack M, Contiero J (2009) Biotechnol Adv 27:30–39

    Article  Google Scholar 

  22. Yang Y, Lu W, Zhang X, Xie W, Cai M, Gross R (2010) Biomacromolecules 11:259–268

    Article  CAS  Google Scholar 

  23. Kulshrestha AS, Gao W, Gross R (2005) Macromolecules 38:3193–3204

    Article  CAS  Google Scholar 

  24. Yang Y, Lu W, Cai J, Hou Y, Ouyang S, Xie W, Gross AA (2011) Macromolecules 44:1977–1985

    Article  CAS  Google Scholar 

  25. Zhang Y-R, Spinella S, Xie W, Cai J, Yang Y, Wang Y-Z, Gross R (2013) Eur Polym J 49:793–803

    Article  CAS  Google Scholar 

  26. Christensen MW, Andersen L, Husum TL, Kirk O (2003) Euro J Lipid Sci Technol 105:318–321

    Article  CAS  Google Scholar 

  27. Montaudo G, Rizzarelli P (2000) Polym Degrad Stab 70:305–314

    Article  CAS  Google Scholar 

  28. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Polym Degrad Stab 91:620–662

    Article  CAS  Google Scholar 

  29. Rabiller C, Maze F (1989) Magn Reson Chem 27:582–584

    Article  CAS  Google Scholar 

  30. Mazur AW, Hiler GD, Lee SSC, Armstrong MP, Wendel JD (1991) Chem Phys Lipids 60:189–199

    Article  CAS  Google Scholar 

  31. Spyros A, Phillipidis A, Photis P (2004) J Agric Food Chem 52:157–164

    Article  CAS  Google Scholar 

  32. Lim L-T, Auras R, Rubino M (2008) Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  33. Gleadall A, Pan J, Atkinson H (2012) Polym Degrad Stab 97:1616–1620

    Article  CAS  Google Scholar 

  34. Mochizuki M, Hirami M (1997) Polym Adv Technol 8:203–209

    Article  CAS  Google Scholar 

  35. Weir N, Buchanan F, Orr J, Dickson G (2004) Proc Inst Mech Eng H 218:307–319

    Article  CAS  Google Scholar 

  36. Weir N, Buchanan F, Orr J, Farrar D, Dickson G (2004) Proc Inst Mech Eng H 218:321–330

    Article  CAS  Google Scholar 

  37. Sawada H (1998) Polym Degrad Stab 59:365–370

    Article  CAS  Google Scholar 

  38. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  39. Rudnik E, Brassioulis D (2011) Ind Crops Prod 33:648–658

    Article  CAS  Google Scholar 

  40. Widjaja A, Yeh T-H, Ju Y-H (2008) J Chin Inst Chem Eng 39:413–418

    Article  CAS  Google Scholar 

  41. Hölter D, Burgath A, Frey H (1997) Acta Polym 48:30–35

    Article  Google Scholar 

  42. Umare SS, Chandure AS, Pandey RA (2009) Polym Degrad Stab 92:464–479

    Article  Google Scholar 

  43. Gottschalk G (1979) Bacterial metabolism. Springer, New York, pp 34–78

    Google Scholar 

  44. Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) The microbial world, vol 07632, 5th edn. Prentice-Hall, Englewood Cliffs, pp 183–195

    Google Scholar 

Download references

Acknowledgments

This work was supported by ONIDOL (France). We would like to thank Marjorie Sweetko for English language revision and Virgile Calvert for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guégan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goujard, L., Roumanet, PJ., Barea, B. et al. Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters. J Polym Environ 24, 64–71 (2016). https://doi.org/10.1007/s10924-015-0742-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0742-7

Keywords

Navigation