Journal of Polymers and the Environment

, Volume 24, Issue 1, pp 64–71

Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters

  • Laurent Goujard
  • Pierre-Jean Roumanet
  • Bruno Barea
  • Yann Raoul
  • Fabio Ziarelli
  • Jean Le Petit
  • Nathalie Jarroux
  • Elisée Ferré
  • Philippe Guégan
Original Paper

DOI: 10.1007/s10924-015-0742-7

Cite this article as:
Goujard, L., Roumanet, PJ., Barea, B. et al. J Polym Environ (2016) 24: 64. doi:10.1007/s10924-015-0742-7

Abstract

This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.

Keywords

Chemical polyesters Enzymatic polyesters Biodegradability 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laurent Goujard
    • 1
  • Pierre-Jean Roumanet
    • 2
  • Bruno Barea
    • 3
  • Yann Raoul
    • 4
  • Fabio Ziarelli
    • 5
  • Jean Le Petit
    • 1
  • Nathalie Jarroux
    • 2
  • Elisée Ferré
    • 1
  • Philippe Guégan
    • 6
    • 7
  1. 1.IMBE, UMR CNRS - IRD 7263, Faculty of Saint-Jérôme, Case 452Aix-Marseille UniversityMarseille Cedex 20France
  2. 2.Team of Material Polymers of Interfaces, LAMB, CNRS UMR 8587University of Evry Val d’EssoneEvryFrance
  3. 3.CIRAD-LipotechnieSUPAGRO/INRA – UMRIATE 1208Montpellier Cedex 1France
  4. 4.ONIDOLParis Cedex 08France
  5. 5.CNRS-FR1739, Faculté de Saint-Jérôme, Case 512Université Aix-MarseilleMarseille Cedex 20France
  6. 6.IPCM, Chimie des Polymères, Sorbonne UniversitésUPMC University ParisParisFrance
  7. 7.CNRS, IPCMChimie des PolymèresParisFrance

Personalised recommendations