Skip to main content
Log in

Effect of Irradiation on the Biodegradation of Cellophane Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellophane has extensively been used as a packaging material for food and pharmaceuticals as a replacement for petrochemical plastics. To improve its barrier properties, coatings are commonly applied to the surface of cellophane films. This layer, however, can hinder the biodegradation of cellophane. Irradiation, used as a sterilization technique, may also affect its biodegradation properties. The objective of this study was to examine the aerobic biodegradation of three different types of cellophane films: uncoated cellophane (CP), nitrocellulose-coated cellophane (CM), and PVdC-coated cellophane (CK) in a simulated aerobic composting environment using a direct measurement respirometric system, as well as to determine the influence of irradiation-induced sterilization (gamma and electron beam) on their biodegradability. The effect of post-irradiation aging on the biodegradability of these regenerated cellulose films was also investigated. Non-irradiated uncoated cellophane, non-irradiated nitrocellulose-coated cellophane and non-irradiated PVdC-coated cellophane approached 71, 55 and 63 % mineralization, respectively, after 141 days. Irradiated CP degraded faster than irradiated CM and CK after it had been stored for 9 months. Irradiation did not significantly affect the biodegradation of CM and CK films during 9 months of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CP:

Uncoated cellophane

CM:

Nitrocellulose coated cellophane

CK:

PVdC coated cellophane

CoCP:

Non-irradiated uncoated cellophane

CoCM:

Non-irradiated nitrocellulose coated cellophane

CoCK:

Non-irradiated PVdC coated cellophane

GMCP:

Gamma irradiated uncoated cellophane

GMCM:

Gamma irradiated nitrocellulose coated cellophane

GMCK:

Gamma irradiated PVdC coated cellophane

EBCP:

E-beam irradiated uncoated cellophane

EBCM:

E-beam irradiated nitrocellulose coated cellophane

EBCK:

E-beam irradiated PVdC coated cellophane

References

  1. Derraik JG (2002) Mar Pollut Bull 44:842

    Article  CAS  Google Scholar 

  2. Elliott JE, Elliott KH (2013) Science 340:556

    Article  CAS  Google Scholar 

  3. Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J et al (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185

    Article  CAS  Google Scholar 

  4. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M et al (2012) Nature 486:52

    Article  CAS  Google Scholar 

  5. Lokensgard E (2008) Industrial plastics: theory and applications, 5th edn. Delmar, Clifton Park

    Google Scholar 

  6. Robertson GL (2013) Food packaging principles and practices, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  7. Brandsch J, Piringer OG (2008) Characteristics of plastic materials. In: Piringer OG, Baner AL (eds) Plastic packaging interaction with food and phamaceuticals. Wiley, Weinheim, p 54

    Google Scholar 

  8. Nilsson T (1974) Studia Forestalia Suecica 117:5

    Google Scholar 

  9. Itävaara M, Siika-Aho M, Viikari L (1999) J Environ Polym Degrad 7:67

    Article  Google Scholar 

  10. Pagga U, Schafer A, Muller RJ, Pantke M (2001) Chemosphere 42:319

    Article  CAS  Google Scholar 

  11. Chandra R, Rustgi R (1998) Prog Polym Sci 23:1273

    Article  CAS  Google Scholar 

  12. Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2002) J Polym Environ 8:183

    Article  Google Scholar 

  13. van der Zee M (2005) Biodegradability of polymers—mechanisms and evaluation methods. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Shrewsbury, p 1

    Google Scholar 

  14. De Wilde B, De Baere L, Tillinger R (1993) Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen 58

  15. Pagga U, Beimborn D, Boelens J, De Wilde B (1995) Chemosphere 31:4475

    Article  CAS  Google Scholar 

  16. Innocenti FD (2005) Biodegradation behaviour of polymers in the soil. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Shrewsbury, p 57

    Google Scholar 

  17. Mayer JM, Kaplan DL, Stote RE, Dixon KL, Shupe AE, Allen AL et al (1996) Biodegradation of polymer films in marine and soil environments. In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washington, DC, p 159

    Chapter  Google Scholar 

  18. Talasila PC, Cameron AC (1997) J Food Sci 62:926

    Article  CAS  Google Scholar 

  19. Farajollahi S, Marshall C, Guthrie JT (2010) J Appl Polym Sci 118:2009

    CAS  Google Scholar 

  20. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC et al (2001) Prog Polym Sci 26:1605

    Article  CAS  Google Scholar 

  21. Kijchavengkul T, Kale G, Auras R (2009) Degradation of biodegradable polymers in real and simulated composting conditions. In: Polymer Degradation and Performance, ACS Symposium Series, vol 1004. p 31

  22. Bellia G, Tosin M, Floridi G, Degli-Innocenti F (1999) Polym Degrad Stab 66:65

    Article  CAS  Google Scholar 

  23. Bellia G, Tosin M, Degli-Innocenti F (2000) Polym Degrad Stab 69:113

    Article  CAS  Google Scholar 

  24. Pesenti-Barili B, Ferdani E, Mosti M, Degli-Innocenti F (1991) Appl Environ Microbiol 57:2047

    CAS  Google Scholar 

  25. ASTM (2011) ASTM D5338-11 Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. Incorporating thermophilic temperatures. ASTM International, West Conshohocken, PA

  26. ISO (2005) ISO 14855 Determination of the ultimate aerobic biodegradabilty and disintergration of plastic materials under controlled composting conditions-Method by analysis of evolved carbon dioxide. Geneva, Switzerland

  27. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2006) Polym Test 25:1006

    Article  CAS  Google Scholar 

  28. Chapra SC (2011) Applied numerical methods W/MATLAB: for engineers & scientists, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  29. ASTM (2012) ASTM D 6400-12 Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International, West Conshohocken, PA

  30. Kijchavengkul T, Auras R (2008) Polym Int 57:793

    Article  CAS  Google Scholar 

  31. David C, De Kesel C, Lefebvre F, Weiland M (1994) Angew Makromol Chem 216:21

    Article  CAS  Google Scholar 

  32. Calmon A, Guillaume S, Bellon-Maurel V, Feuilloley P, Silvestre F (1999) J Environ Polym Degrad 7:157

    Article  CAS  Google Scholar 

  33. Monk DW (1972) Text Res J 42:741

    Article  CAS  Google Scholar 

  34. Zhang L, Zhou J, Huang J, Gong P, Zhou Q, Zheng L et al (1999) Ind Eng Chem Res 38:4284

    Article  CAS  Google Scholar 

  35. Charlesby A (1987) Radiation chemistry principles, applications. VCH, New York

    Google Scholar 

  36. Ozen BF, Floros JD (2001) Trends Food Sci Technol 12:60

    Article  CAS  Google Scholar 

  37. Carlsson DJ, Chmela S (1990) Polymers and high-energy irradiation: degradation and stabilization. In: Scott G (ed) Mechanisms of polymer degradation and stabilization. Elsevier, London, p 109

    Chapter  Google Scholar 

  38. IAEA (2004) Emerging applications of radiation processing. IAEA-TECDOC-1386, Vienna

  39. Shen J, Bartha R (1996) Appl Environ Microbiol 62:1428

    CAS  Google Scholar 

  40. Gu JD, Yang SW, Eberiel RD, McCarthy SP, Gross RA (1994) J Environ Polym Degrad 2:129

    Article  CAS  Google Scholar 

  41. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Macromol Biosci 7:255

    Article  CAS  Google Scholar 

  42. Stevens ES (2003) Biocycle 44:24

    CAS  Google Scholar 

  43. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Polym Degrad Stab 95:2641

    Article  CAS  Google Scholar 

  44. McKeen LW (2012) The effect of sterilization on plastics and elastomers, 3rd edn. Elsevier, Waltham

    Google Scholar 

  45. O’Donnell JH, Sangster DF (1970) Principles of radiation chemistry. Edward Arnold, London

    Google Scholar 

  46. Montanari L, Cilurzo F, Valvo L, Faucitano A, Buttafava A, Groppo A et al (2001) J Control Release 75:317

    Article  CAS  Google Scholar 

  47. Urbain WM (1986) Food irradiation. Academic Press, Orlando

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Selke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyathiar, P., Selke, S. & Auras, R. Effect of Irradiation on the Biodegradation of Cellophane Films. J Polym Environ 23, 449–458 (2015). https://doi.org/10.1007/s10924-015-0740-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0740-9

Keywords

Navigation