Skip to main content
Log in

Optimization of Carbon Dioxide and Valeric Acid Utilization for Polyhydroxyalkanoates Synthesis by Cupriavidus necator

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The utilization of captured CO2 as a part of the CO2 capture and storage system to produce biopolymers could address current environmental issues such as global warming and depletion of resources. In this study, the effect of feeding strategies of CO2 and valeric acid on cell growth and synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in Cupriavidus necator was investigated to determine the optimal conditions for microbial growth and biopolymer accumulation. Among the studied CO2 concentrations (1–20 %), microbial growth and poly(3-hydroxybutyrate) accumulation were optimal at 1 % CO2 using a gas mixture at H2:O2:N2 = 7:1:91 % (v/v). When valeric acid was fed together with 1 % CO2, (R)-3-hydroxyvalerate synthesis increased with increasing valeric acid concentration up to 0.1 %, but (R)-3-hydroxybutyrate synthesis was inhibited at >0.05 % valeric acid. Sequential addition of valeric acid (0.05 % at Day 0 followed by 0.025 % at Day 2) showed an increase in 3HV fraction without inhibitory effects on 3HB synthesis during 4 d accumulation period. The resulting P(3HB-co-3HV) with 17–32 mol  % of 3HV is likely to be biocompatible. The optimal concentrations and feeding strategies of CO2 and valeric acid determined in this study for microbial P(3HB-co-3HV) synthesis can be used to produce biocompatible P(3HB-co-3HV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21

    CAS  Google Scholar 

  2. Verlinden RAJ, Hill DJ, Kenward MA, Willians CD, Radecka I (2007) J Appl Microbiol 102:1437

    Article  CAS  Google Scholar 

  3. Ishizaki A, Tanaka K, Taga N (2001) Appl Microbiol Biotechnol 57:6

    Article  CAS  Google Scholar 

  4. Khanna S, Srivastava AK (2005) Process Biochem 40:607

    Article  CAS  Google Scholar 

  5. Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Chem Sus Chem 3:306

    Article  CAS  Google Scholar 

  6. Akaraonye E, Keshavarz T, Roy I (2010) J Chem Technol Biotechnol 85:732

    Article  CAS  Google Scholar 

  7. Chen GQ, Wu Q (2005) Biomaterials 26:6565

    Article  CAS  Google Scholar 

  8. Khanna S, Srivastava AK (2007) J Ind Microbiol Biotechnol 34:457

    Article  CAS  Google Scholar 

  9. Anderson AJ, Dawers EA (1990) Microbiol Rev 54:450

    CAS  Google Scholar 

  10. Ishizaki A, Tanaka K (1991) J Ferment Bioeng 71:254

    Article  CAS  Google Scholar 

  11. Tanaka K, Ishizaki A (1995) Biotechnol Bioeng 45:268

    Article  CAS  Google Scholar 

  12. Tanaka K, Ishizaki A (1994) J Ferment Bioeng 77:425

    Article  CAS  Google Scholar 

  13. Volova TG, Kalacheva GS, Gorbunova OV, Zhila NO (2004) Appl Biochem Microbiol 40:170

    Article  CAS  Google Scholar 

  14. Volova TG, Kalacheva GS (2005) Microbiology 74:54

    Article  CAS  Google Scholar 

  15. Volova TG, Kiselev EG, Shishatskaya EI, Zhila NO, Boyandin AN, Syrvacheva DA, Vinogradova ON, Kalacheva GS, Vasiliev AD, Peterson IV (2013) Bioresource Technol 146:215

    Article  CAS  Google Scholar 

  16. Volova TG, Kalacheva GS, Steinbuchel A (2008) Macromol Symp 269:1

    Article  CAS  Google Scholar 

  17. Werker A, Lind P, Bengtsson S, Nordstrom F (2008) Water Res 42:2517

    Article  CAS  Google Scholar 

  18. Jung YK, Kim TY, Park SJ, Lee SY (2010) Biotechnol Bioeng 105:161

    Article  CAS  Google Scholar 

  19. Gunarante L, Shanks R, Amarasinghe G (2004) Thermochim Acta 423:127

    Article  Google Scholar 

  20. Pedros-Alio C, Mas J, Guerrero R (1985) Arch Microbiol 143:178

    Article  CAS  Google Scholar 

  21. Byrom D (1987) Trends Biotechnol 5:246

    Article  CAS  Google Scholar 

  22. Pohlmann A (2006) Nat Biotechnol 24:1257

    Article  Google Scholar 

  23. Reinecke F, Steinbuchel A (2009) J Mol Microbiol Biotechnol 16:91

    Article  CAS  Google Scholar 

  24. Bongers L (1970) J Bacteriol 104:145

    CAS  Google Scholar 

  25. Dixon NM, Kell DB (1989) J Appl Bacteriol 67:109

    Article  CAS  Google Scholar 

  26. Shang L, Jiang M, Ryu CH, Chang HN, Cho SH, Lee JW (2003) Biotechnol Bioeng 83:312

    Article  CAS  Google Scholar 

  27. Shang L, Yim SC, Park HG, Chang HN (2004) Biotechnol Prog 20:140

    Article  CAS  Google Scholar 

  28. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Enzyme Microb Technol 16:556

    Article  CAS  Google Scholar 

  29. Du GC, Chen J, Yu J, Lun S (2001) Biochem Eng J 8:103

    Article  CAS  Google Scholar 

  30. Kim DY, Park DS, Kwon SB, Chung MG, Bae KS, Park HY, Rhee YH (2009) J Microbiol 47:651

    Article  CAS  Google Scholar 

  31. Volova TG (2004) Polyhydroxyalkanoates-plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, New York

    Google Scholar 

  32. Scandola M, Pizzoli M, Ceccorulli G, Cesàro A, Paolletti S, Navarini L (1988) Int Biol Macromol 10:373

    Article  CAS  Google Scholar 

  33. Cesaro A, Scandola M (1989) Chimicaoggi 7:81

    Google Scholar 

  34. Mitomo H, Barham PJ, Keller A (1987) Polym J 19:1241

    Article  CAS  Google Scholar 

  35. Madden LA, Anderson JA (1998) Macromolecules 31:5660

    Article  CAS  Google Scholar 

  36. Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  37. Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O (2003) Biochem Eng J 16:125

    Article  CAS  Google Scholar 

  38. Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA (2004) J Mater Sci Mater Med 15:719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was substantially supported by the Korea Ministry of Environment as the GAIA (Geo-Advanced Innovative Action) Project and in part by the Integrated Research Institute of Construction and Environmental Engineering at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungphile Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, I., Jho, E.H. & Nam, K. Optimization of Carbon Dioxide and Valeric Acid Utilization for Polyhydroxyalkanoates Synthesis by Cupriavidus necator . J Polym Environ 22, 244–251 (2014). https://doi.org/10.1007/s10924-013-0627-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0627-6

Keywords

Navigation