Skip to main content
Log in

Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bacterial cellulose pellicles were produced by Gluconacetobacter xylinus using non conventional low-cost carbon sources, such as glycerol remaining from biodiesel production and grape bagasse, a residue of wine production. The carbon sources assayed showed their suitability for microbial cellulose production, with relatively high production values such as 10.0 g/l for the culture medium with glycerol from biodiesel as carbon source and corn steep liquor as nitrogen source; and 8.0 g/l for the culture medium containing grape bagasse and corn steep liquor. Glucose, commercial glycerol and cane molasses were also assayed as carbon sources for comparison. The bacterial celluloses produced were characterized by means of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Morphological analysis showed that bacterial cellulose microfibrils produced from the non-conventional media used were several micrometers long and had rectangular cross-sections with widths and thicknesses in the range of 35–70 and 13–24 nm, respectively. X-ray patterns showed crystallinity levels in the range of 74–79 % (area method), whereas both X-ray patterns and infrared spectroscopy evidenced the presence of peaks characteristic of Cellulose I polymorph. Besides thermal properties were similar to those found for the pellicle obtained from glucose. The study performed showed the suitability of using wine residues or glycerol remaining from increasing biodiesel production as cheap carbon sources for production of bacterial cellulose microfibrils, with similar characteristics as those obtained by use of more expensive carbon sources such as glucose or commercial glycerol. On the other hand, the low cost nitrogen sources used (corn steep liquor or diammonium phosphate) also contributed to the economy of the bioprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Chem Soc Rev 40:3941

    Article  CAS  Google Scholar 

  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6:612

    Article  Google Scholar 

  3. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) BioResources 3:929

    Google Scholar 

  4. Siró I, Plackett D (2010) Cellulose 17:459

    Article  Google Scholar 

  5. Siqueira G, Bras J, Dufresne A (2010) Polymers 2:728

    Article  CAS  Google Scholar 

  6. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Angew Chem Int Ed 50:5438

    Article  CAS  Google Scholar 

  7. Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261

    Article  CAS  Google Scholar 

  8. Chawla PR, Bajaj IB, Shrikant AS, Singhal RS (2009) Food Technol Biotechnol 47:107

    CAS  Google Scholar 

  9. El-Saied H, Basta AH, Gobran RH (2004) Polym Plast Technol Eng 43:797

    Article  CAS  Google Scholar 

  10. Yamada Y, Hoshino K, Ishikawa T (1997) Biosci Biotechnol Biochem 61:1244

    Article  CAS  Google Scholar 

  11. Yamada Y (2000) Int J Syst Evol Microbiol 50:2225

    Article  Google Scholar 

  12. Valla S, Kjosbakken J (1982) J Gen Microbiol 128:1401

    CAS  Google Scholar 

  13. William WS, Cannon RE (1989) Appl Environ Microbiol 55:2448

    Google Scholar 

  14. Brown AJ (1886) J Chem Soc 49:172

    Article  CAS  Google Scholar 

  15. Brown AJ (1886) J Chem Soc 49:432

    Article  CAS  Google Scholar 

  16. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) J Mater Sci 24:3141

    Article  CAS  Google Scholar 

  17. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) J Mater Sci 25:2997

    Article  CAS  Google Scholar 

  18. Tajima K, Fujiwara M, Takai M, Hayashi J (1995) Mokuzai Gakkaishi 41:749

    CAS  Google Scholar 

  19. Bicerano J, Brewbaker JL (1995) J Chem Soc Faraday Trans 91:2507

    Article  CAS  Google Scholar 

  20. Gindl W, Keckes J (2004) Compos Sci Technol 64:2407

    Article  CAS  Google Scholar 

  21. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Biomaterials 26:419

    Article  CAS  Google Scholar 

  22. Penny GS, Stephens RS, Winslow AR, US5009797A (1991)

  23. Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y, EP396344A2 (1990)

  24. Suzuki M, Kitamura N, Matsumoto R, JP11172115A (1999)

  25. Seliktar D, Almany L, WO2005061018A1 (2005)

  26. Wang YZ, Zhang YS, He F, Huang Y, Luo HL, CN101274107A (2008)

  27. Mori R, Nakai T, Yoshino K,WO2011086788A1 (2011)

  28. Nakagaito AN, Masaya Nogi M, Yano H (2010) MRS Bull 35:214

    Article  CAS  Google Scholar 

  29. Castro C, Zuluaga R, Putaux JL, Caroa G, Mondragon I, Gañan P (2011) Carbohydr Polym 84:96

    Article  CAS  Google Scholar 

  30. Moosavi-Nasab M, Yousefi A (2011) Iran J Biotechnol 9:94

    CAS  Google Scholar 

  31. Rani MU, Navin KR, Appaiah KAA (2011) J Microbiol Biotechnol 21:739

    Article  CAS  Google Scholar 

  32. Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Biores Technol 102:7354

    Article  CAS  Google Scholar 

  33. Chi Z, Pyle D, Frear C, Chen S (2007) Process Biochem 42:1537

    Article  CAS  Google Scholar 

  34. Segal L, Creely JJ, Martin AE, Conrad CM (1959) Tex Res 29:786

    Article  CAS  Google Scholar 

  35. Keshk SMAS, Sameshima K (2005) Afr J Biotechnol 4:478

    CAS  Google Scholar 

  36. Kornmann H, Duboc P, Marison I, Von Stockar U (2003) Appl Environ Microbiol 69:6091

    Article  CAS  Google Scholar 

  37. Nerantzis ET, Tataridis P (2005) e J Sci Technol. http://e-jst.teiath.gr/issue_3_2006/Nerantzis_3.pdf. Accessed April 2007

  38. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biomass Bioenergy 32:60

    Article  CAS  Google Scholar 

  39. Khana S, Goyal A, Moholkar VS (2011) Crit Rev Biotechnol 1

  40. Revol JF, Dietrich A, Goring DAI (1987) Can J Chem 65:1724

    Article  CAS  Google Scholar 

  41. Yamamoto H, Horii F (1994) Cellulose 1:57

    Article  CAS  Google Scholar 

  42. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose 5:249

    Article  CAS  Google Scholar 

  43. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Ho Park W, Youk JH (2005) Carbohydr Res 340:2376

    Article  CAS  Google Scholar 

  44. Johnson Ford EN, Mendon SK, Thames SF, Rawlins JW (2010) J Eng Fiber Fabr 5:10

    CAS  Google Scholar 

  45. Terinte N, Ibbett R, Schuster KC (2011) Lenzinger Ber 89:118

    CAS  Google Scholar 

  46. Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Bioresour Technol 102:9105

    Article  CAS  Google Scholar 

  47. Laszkiewicz B (1997) J Appl Polym Sci 67:1871

    Google Scholar 

  48. Mansikkamäki P, Lahtinen M, Rissanen K (2005) Cellulose 12:233

    Article  Google Scholar 

  49. Park S, Baker JO, Himmel ME, Parilla PA, Johnson D (2010) Biotechnol Biofuels 3:1

    Article  Google Scholar 

  50. Nishiyama Y, Johnson GP, French AD, Trevor Forsyth V, Langan P (2008) Biomacromolecules 9:3133

    Article  CAS  Google Scholar 

  51. O’Sullivan AC (1997) Cellulose 4:173

    Article  Google Scholar 

  52. Nishiyama Y (2009) J Wood Sci 55:241

    Article  CAS  Google Scholar 

  53. Nishiyama Y, Langan P, Chanzy H (2002) J Am Chem Soc 124:9074

    Article  CAS  Google Scholar 

  54. Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) Bioresour Technol 101:6084

    Article  CAS  Google Scholar 

  55. Yamamoto H, Horii F, Hirai A (1996) Cellulose 3:229

    Article  CAS  Google Scholar 

  56. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Cellulose 15:149

    Article  Google Scholar 

  57. Kataoka Y, Kondo T (1996) Macromolecules 29:6356

    Article  CAS  Google Scholar 

  58. Sugiyama J, Vuong R, Chanzy H (1991) Macromolecules 24:4168

    Article  CAS  Google Scholar 

  59. Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) J Therm Anal Calorim 87:815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. Luis Ielpi (Fundación Instituto Leloir, Buenos Aires, Argentina) for the bacterial strain, Dr. Mariana Combina (Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria, Mendoza, Argentina) and Dr. Cecilia Rojo (Estación Experimental Agropecuaria, Instituto Nacional de Tecnología Agropecuaria, Mendoza and CONICET, Argentina) for grape bagasse, and Agencia Nacional de Promoción Científica y Tecnológica for financial support (PICT 00223 2008—PRESTAMO BID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analía Vazquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vazquez, A., Foresti, M.L., Cerrutti, P. et al. Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus . J Polym Environ 21, 545–554 (2013). https://doi.org/10.1007/s10924-012-0541-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0541-3

Keywords

Navigation