Skip to main content
Log in

Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  2. AWF (2011) American Wood Fibers website. Maryland, USA. www.awf.com. Accessed 22 March 2012

  3. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Compos Sci Technol 66:1813–1824

    Article  CAS  Google Scholar 

  4. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) J Mater Sci 40:4221–4229

    Article  CAS  Google Scholar 

  5. Huda MS, Drzal LT, Mohanty AK, Misra M (2007) Compos B 38:367–379

    Article  Google Scholar 

  6. Oksman K, Skrifvars M, Selin JF (2003) Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  7. Braun B, Dorgan JR, Knauss DM (2006) J Polym Environ 14:49–58

    Article  CAS  Google Scholar 

  8. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Macromol Mater Eng 288:35–43

    Article  CAS  Google Scholar 

  9. Lee SH, Wang S (2006) Compos A 37:80–91

    Article  CAS  Google Scholar 

  10. Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L (2003) Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  11. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Compos Sci Technol 63:1281–1286

    Article  CAS  Google Scholar 

  12. Chow P, Nakayama FS, Blahnik B, Youngquist JA, Coffelt TA (2008) Ind Crops Prod 28:303–308

    Article  CAS  Google Scholar 

  13. Raya SS, Yamada K, Okamoto M, Ueda K (2003) Polymer 44:857–866

    Article  Google Scholar 

  14. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  15. Van de Velde K, Kiekens P (2002) Polym Test 21:433–442

    Article  Google Scholar 

  16. Perego G, Cella GD, Bastioli C (1996) J Appl Polym Sci 59:37–43

    Article  CAS  Google Scholar 

  17. Liu X, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Thermochim Acta 509:147–151

    Article  CAS  Google Scholar 

  18. Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Polym Degrad Stab 95:1704–1707

    Article  CAS  Google Scholar 

  19. Manikandan Nair KC, Thomas S, Groeninckx G (2001) Compos Sci Technol 61:2519–2529

    Article  CAS  Google Scholar 

  20. Pluta M (2004) Polymer 45:8239–8251

    Article  CAS  Google Scholar 

  21. Martin O, Averous L (2001) Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  22. Kulinski Z, Piorkowska E (2005) Polymer 46:10290–10300

    Article  CAS  Google Scholar 

  23. Hiljanen-Vainio M, Heino M, Seppala JV (1998) Polymer 39:865–872

    Article  CAS  Google Scholar 

  24. Osswald TA (May 26–27, 1999) In: Proceedings of the 5th international conference of wood fiber–plastic composites Madison, Wisconsin

  25. Ljungberg N, Cavaillé JY, Heux L (2006) Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  26. Folkes MJ (1985) In: Bevis MJ (ed) Short fibre reinforced thermoplastics. Research Studies Press, Chichester, p 151

  27. Devi LU, Bhagawan SS, Thomas S (1997) J Appl Polym Sci 64:1739–1748

    Article  CAS  Google Scholar 

  28. Wells JK, Beaumont PWR (1985) J Mater Sci 20:1275–1284

    Article  Google Scholar 

  29. Pavithran C, Mukherjee PS, Brahmakumar M (1991) J Reinf Plast Comp 10:91–101

    Article  CAS  Google Scholar 

  30. Park SD, Todo M, Arakawa K, Koganemaru M (2006) Polymer 47:1357–1363

    Article  CAS  Google Scholar 

  31. Mascia L (1974) In: The role of additives in plastics, chap 3. Edward Arnold, London UK

  32. Zhang F, Endo T, Qiu W, Yang L, Hirotsu T (2002) J Appl Polym Sci 84:1971–1980

    Article  CAS  Google Scholar 

  33. Pearson RA, Yee AF (1989) J Mater Sci 24:2571–2580

    Article  CAS  Google Scholar 

  34. Rong MZ, Zheng MQ, Zheng YX, Zeng HM, Friedrich K (2001) Polymer 42:3301–3304

    Article  CAS  Google Scholar 

  35. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  36. Rana AK, Mitra BC, Banerjee AN (1999) J Appl Polym Sci 71:531–539

    Article  CAS  Google Scholar 

  37. Petersen K, Nielsen PV, Olsen MB (2001) Starch–Stärke 53:356–361

    Article  CAS  Google Scholar 

  38. George J, Thomas S, Bhagawan SS (1999) J Thermoplast Compos Mater 12:443–464

    CAS  Google Scholar 

  39. Simonsen J, Jacobsen R, Rowell R (1998) J Appl Polym Sci 68:1567–1573

    Article  CAS  Google Scholar 

  40. Liu X, Dever M, Fair N, Benson RS (1997) J Polym Environ 5:225–235

    CAS  Google Scholar 

  41. Thomson JL (1990) Polym Compos 11:105–113

    Article  Google Scholar 

  42. Fay JJ, Murphy CJ, Thomas DA, Sperling LH (1991) Polym Eng Sci 31:1731–1741

    Article  CAS  Google Scholar 

  43. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  44. MatWeb (2012) Material Property Data. Online Database. Maple wood properties—various species. www.matweb.com. Accessed 22 March 2012

  45. Bergman R, Cai Z, Carll CG, Clausen CA, Dietenberger MA, Falk RH, Frihart CR, Glass SV, Hunt CG, Ibach RE, Kretschmann DE, Rammer DR, Ross RJ (2010) Wood Handbook, Wood as an Engineering Material. General Technical Report FPL-GTR-190. Forest Products Laboratory, Madison, Wisconsin USA

Download references

Acknowledgments

The authors gratefully acknowledge Buckeye Technologies Inc. (USA) for supplying the cotton linter fibres free of charge, and for providing relevant technical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Way, C., Wu, D.Y., Cram, D. et al. Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres. J Polym Environ 21, 54–70 (2013). https://doi.org/10.1007/s10924-012-0462-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0462-1

Keywords

Navigation