Skip to main content
Log in

Communities of Microbial Enzymes Associated with Biodegradation of Plastics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Promiscuous and frequently deliberate release of plastics is responsible for growing environmental pollution. Low cost, efficient technology, eco-friendly treatments capable of reducing and even eliminating plastics, are developed by the researchers. Among biological agents, microbial enzymes are one of the most powerful tools for the biodegradation of plastics. Activity of biodegradation of most enzymes is higher in fungi than in bacteria. This review focuses on induced biodegradation rate of plastics by fungal and bacterial enzymes and the mode of action of biodegradation. Following a brief discussion of the enzymes and the factors affecting the production of enzymes, a descriptive survey is presented on various individual group of enzymes such as laccase, cutinase, hydrolase, esterase, protease and urease etc. and the microbial species that were predominant are Streptococcus, Bacillus, Pseudomonas, Staphylococcus comprise the bacterial species and the fungal species include Aspergillus, Penicillium, Phaenarochete, Pestalotiopsis etc. In plastics surface aspects, significant changes indicate its biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen AB, Hilliard NP, Howard GT (1999) Purification and characterization of a soluble polyurethane degrading enzyme from Comamonas acidovorans. Int Biodeterior Biodegradation 43:37–41

    Article  CAS  Google Scholar 

  2. Arkatkar A, Arutchelvi J (2009) Approaches to enhance the biodegradation of polyolefin. Open Environ Eng J 2:68–80

    Article  CAS  Google Scholar 

  3. Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24

    Article  CAS  Google Scholar 

  4. Arutchelvi J, Sudhakar M (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7(1):9–22

    CAS  Google Scholar 

  5. Barnes D, Galgani F, Thompson R, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  6. Barratt SR (2003) Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J Appl Microbiol 95:78–85

    Article  CAS  Google Scholar 

  7. Bentham RH, Morton LHG, Allen NG (1987) Rapid assessment of the microbial deterioration of polyurethanes. Int Biodeterior 23:377–386

    Article  CAS  Google Scholar 

  8. Bikiaris D, Aburto J, Alric I, Borredon E, Botev M, Betchev C (1999) Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylase and starch. J Appl Polym Sci 71:1089–1100

    Article  CAS  Google Scholar 

  9. Dashtban M, Schraft H, Syed TA (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50

    CAS  Google Scholar 

  10. Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  11. Frazer AC (1994) O-methylation and other transformations of aromatic compounds by acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 445–483

    Chapter  Google Scholar 

  12. Glass JE, Swift G (1989) Agricultural and synthetic polymers, biodegradation and utilization, ACS symposium series, 433. American Chemical Society, Washington, pp 9–64

    Google Scholar 

  13. Gu JD, Ford TE, Mitton DB, Mitchell R (2000a) Microbial corrosion of metals. In: Revie W (ed) The Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 915–927

    Google Scholar 

  14. Gu JD, Ford TE, Mitton DB, Mitchell R (2000b) Microbial degradation and deterioration of polymeric materials. In: Revie W (ed) The Uhlig Corrosion Handbook, 2nd edn. Wiley, New York, pp 439–460

    Google Scholar 

  15. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegradation 52:69–91

    Article  CAS  Google Scholar 

  16. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  Google Scholar 

  17. Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    Article  CAS  Google Scholar 

  18. Howard GT, Blake RC (1998) Growth of Pseudomonas fluorescens on a polyester-based polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeterior Biodegradation 42:7–12

    Article  Google Scholar 

  19. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49:245–252

    Article  CAS  Google Scholar 

  20. Imam SH, Gould JM, Gordon SH, Kinney MP, Ramsey AM, Tosteson TR (1992) Fate of starch-containing plastic 61 ms exposed in aquatic habitats. Curr Microbiol 25:1–8

    Article  CAS  Google Scholar 

  21. Kwpp LR, Jewell WJ (1992) Biodegradability of modified plastic films in controlled biological environments. Environ Technol 26:193–198

    Article  Google Scholar 

  22. Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  Google Scholar 

  23. Maeda H, Yamagata Y (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788

    Article  CAS  Google Scholar 

  24. Masaki K, Kamini NR, Ikeda H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550

    Article  CAS  Google Scholar 

  25. Mayer AM, Staples RC (2002) Laccase new functions for an old enzyme. Phytochemistry 60:561–565

    Article  Google Scholar 

  26. Nakajima K, Onuma T, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129:39–42

    Google Scholar 

  27. Pathirana RA, Seal KJ (1983) Gliocladium roseum (Bainer), a potential biodeteriogen of polyester polyurethane elastomers. In: Oxley TA, Barry S (eds) Biodeterioration, 5th edn. Wiley, Chichester, pp 679–689

    Google Scholar 

  28. Phua SK, Castillo E, Anderson JM, Hiltner A (1987) Biodegradation of a polyurethane in vitro. J Biomed Mater Res 21:231–246

    Article  CAS  Google Scholar 

  29. Pospisil J, Nespurek S (1997) Highlights in chemistry and physics of polymer stabilization. Macromol Symp 115:143–163

    Article  CAS  Google Scholar 

  30. Rivard C, Moens L, Roberts K, Brigham J, Kelley S (1995) Starch esters as biodegradable plastics: effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzym Microb Technol 17:848–852

    Article  CAS  Google Scholar 

  31. Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeterior Biodegradation 50:33–40

    Article  CAS  Google Scholar 

  32. Ruiz C, Main T, Hilliard N, Howard GT (1999) Purification and characterization of two polyurethanase enzymes from Pseudomonas chlororaphis. Int Biodeterior Biodegradation 43:43–47

    Article  CAS  Google Scholar 

  33. Russell JR (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  Google Scholar 

  34. Scott G (1999) Polymers in modern life. Polymers and the Environment. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  35. Seymour RB (1989) Polymer science before & after 1899: notable developments during the lifetime of Maurtis Dekker. J Macromol Sci, Pure Appl Chem 26:1023–1032

    Article  Google Scholar 

  36. Shah AA, Fariha H (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  37. Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  CAS  Google Scholar 

  38. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  Google Scholar 

  39. Tokiwa Y, Calabia BP (2004) Review degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    Article  CAS  Google Scholar 

  40. Tokiwa Y, Calabia BP (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  Google Scholar 

  41. Treviño AL, Garcia G (2011) Polyurethane foam as substrate for fungal strains. Adv Biosci Biotechnol 2:52–58

    Article  Google Scholar 

  42. Underkofler LA (1958) Production of microbial enzymes and their applications. Appl Microbiol 6:212–221

    CAS  Google Scholar 

  43. Yang HS, Yoon JS, Kim MN (2004) Effects of storage of a mature compost on its potential for biodegradation of plastics. Polym Degrad Stab 84:411–417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himani Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, H., Gupta, R. & Tiwari, A. Communities of Microbial Enzymes Associated with Biodegradation of Plastics. J Polym Environ 21, 575–579 (2013). https://doi.org/10.1007/s10924-012-0456-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0456-z

Keywords

Navigation