Skip to main content

Advertisement

Log in

Synthesis and Characterization of Novel Heat Stable and Processable Optically Active Poly(Amide–Imide) Nanostructures Bearing Hydroxyl Pendant Group in an Ionic Green Medium

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ionic liquids (IL)s have been recognized as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry due to their unique chemical and physical properties. In this investigation, a series of organosoluble, thermally stable and optically active hydroxyl-containing poly(amide–imide)s (PAI)s were prepared via polycondensation reaction of an aromatic diamine, 3,5-diamino-N-(4-hydroxyphenyl)benzamide (4), and different chiral amino acid-based diacids (3a–3e) in the presence of molten tetrabutylammonium bromide as a molten IL and triphenyl phosphite under classical heating method. This process is safe and green since toxic and volatile organic solvents such as N-methylpyrrolidone (NMP) and N,N′-dimethylacetamide (DMAc) were eliminated. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.23 and 0.54 dL g−1 and were characterized by Fourier transform infrared spectroscopy, specific rotation, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis, elemental analysis, and in some cases by 1H-NMR techniques. The FE-SEM micrographs and XRD showed that the synthesized PAIs were nanostructured and amorphous polymers. The effect of ultrasonic irradiation on the size of polymer particles was also investigated and the results showed that the size of polymer nanoparticles after ultrasonication became smaller than the size of them, before ultrasonic radiation. All of the polymers were readily soluble in many organic solvents such as N,N′-dimethyl sulfoxide, DMAc and NMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamciuc E, Hamciuc C, Airinei A, Bruma M (1997) Angew Makromol Chem 245:105–112

    Article  CAS  Google Scholar 

  2. Hsiao SH, Yang CP, Chen CW, Liou GS (2005) J Polym Res 38:627–634

    Google Scholar 

  3. Yang CP, Su YY (2005) Macromol Chem Phys 206:1947–1958

    Article  CAS  Google Scholar 

  4. Behniafar H, Mohammadparast-delshaad S (2012) Polym Degrad Stabil 97:228–233

    Article  CAS  Google Scholar 

  5. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  6. Illescas J, Ramirez-Fuentes YS, Rivera E, Morales-Saavedra OG, Rodriguez-Rosales AA, Alzari V, Nuvoli D, Marian A (2012) J Polym Sci, Part A: Polym Chem 50:821–830

    Article  CAS  Google Scholar 

  7. Zhang S, Feret A, Lefebvre H, Tessier M, Fradet A (2011) Chem Commun 47:11092–11094

    Article  CAS  Google Scholar 

  8. Matsumoto K, Endo T (2011) J Polym Sci, Part A: Polym Chem 49:3582–3587

    Article  CAS  Google Scholar 

  9. Kaneko Y, Kyutoku T, Shimomura N, Kadokawa JI (2011) Chem Lett 40:31–33

    Article  CAS  Google Scholar 

  10. Mallakpour S, Rafiee Z (2011) Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  11. Ye L, Ju L, Wu C, Feng T, Mo W, Wu F, Bai Y, Feng ZG (2009) J Appl Polym Sci 114:1086–1093

    Article  CAS  Google Scholar 

  12. Bai H, Wu X, Shi G (2006) Polymer 47:1533–1537

    Article  CAS  Google Scholar 

  13. Tsubata A, Uchiyama T, Kameyama A, Nishikubo T (1997) Macromolecules 30:5649–5654

    Article  CAS  Google Scholar 

  14. Domanska U, Marciniak A, Krolikowski M (2008) J Phys Chem B 112:1218–1225

    Article  CAS  Google Scholar 

  15. Mallakpour S, Taghavi M (2008) Polymer 49:3239–3249

    Article  CAS  Google Scholar 

  16. Mallakpour S, Dinari M (2010) J Polym Environ 18:705–713

    Article  CAS  Google Scholar 

  17. Mallakpour S, Zadehnazari A (2009) J Macromol Sci, Pure Appl Chem 46:783–789

    Article  CAS  Google Scholar 

  18. Wulff G (2007) Angew Chem Int Ed 28:21–37

    Google Scholar 

  19. Song C, Li L, Wang F, Deng J, Yang W (2011) Polym Chem 2:2825–2829

    Article  CAS  Google Scholar 

  20. Sogava H, Shiotsuki M, Matsuoka H, Sanda F (2011) Macromolecules 44:3338–3345

    Article  Google Scholar 

  21. Sanda F, Yukawa Y, Masuda T (2004) Polymer 45:849–854

    Article  CAS  Google Scholar 

  22. Mallakpour S, Zadehnazari A (2011) Exp Polym Lett 5:142–181

    Article  CAS  Google Scholar 

  23. Maeda K, Kuroyanagi K, Sakurai SI, Yamanaka T, Yashima E (2011) Macromolecules 44:2457–2464

    Article  CAS  Google Scholar 

  24. Liu R, Sogawa H, Shiotsuki M, Masuda T, Sanda F (2010) Polymer 51:2255–2263

    Article  CAS  Google Scholar 

  25. In I, Kim SY (2005) Macromol Rapid Commun 206:1862–1869

    Article  CAS  Google Scholar 

  26. Mallakpour S, Hajipour AR, Habibi S (2002) J Appl Polym Sci 86:2211–2216

    Article  CAS  Google Scholar 

  27. Mallakpour S, Hajipour AR, Habibi S (2001) Eur Polym J 37:2435–2442

    Article  CAS  Google Scholar 

  28. Mallakpour S, Shahmohammadi MH (2004) J Appl Polym Sci 92:951–959

    Article  CAS  Google Scholar 

  29. Mallakpour S, Shahmohammadi MH (2005) Iran Polym J 14:473–483

    CAS  Google Scholar 

  30. Faghihi K, Foroughifar N, Mallakpour S (2004) Iran Polym J 13:93–99

    CAS  Google Scholar 

  31. Van Krevelen DW (1975) Polymer 16:615–620

    Article  Google Scholar 

  32. Van Eldik R, Hubbard CD (1996) Chemistry under extreme or non classical conditions. Wiley, New York

    Google Scholar 

  33. Flosdorf EW, Chambers LA (1933) J Am Chem Soc 55:3051–3052

    Article  CAS  Google Scholar 

  34. Melville HW, Murray AJR (1950) Trans Faraday Soc 46:996–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), for financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Zadehnazari, A. Synthesis and Characterization of Novel Heat Stable and Processable Optically Active Poly(Amide–Imide) Nanostructures Bearing Hydroxyl Pendant Group in an Ionic Green Medium. J Polym Environ 21, 132–140 (2013). https://doi.org/10.1007/s10924-012-0442-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0442-5

Keywords

Navigation