Skip to main content

Advertisement

Log in

Estimation on Biodegradability of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and Numbers of Aerobic PHB/V Degrading Microorganisms in Different Natural Environments

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To assess the capacity of the natural environment for degrading PHB/V, the film-MPN method proposed previously was modified to estimate the numbers of PHB/V degrading microorganisms (degraders) in various environments. The First-Order Reaction (FOR) model was used to determine the appropriate incubation period for the method. Numbers of aerobic PHB/V degraders were estimated in garden soil, paddy field soil, farm soil, river bank soil, infertile garden soil, river water, activated sludge, and seawater by the film-MPN method. Results were compared with those estimated by the clear-zone technique and showed that the film-MPN method was suitable for estimating the numbers of PHB/V degraders in the environments tested. On the other hand, biodegradability of injection molded PHB/V samples was investigated in several kinds of environments. The changes of weight were studied and results showed that biodegradability of PHB/V related to the numbers of PHB/V degraders in similar ecosystem in different regions. In different environments the biodegradability of PHB/V not only related to the number of PHB/V degraders, but also depended on whether there were conditions for the PHB/V degraders to grow and proliferate easily in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Lemoigne (1926) Bull Soc. Chim. Biol. (Paris) 8 770–782

    Google Scholar 

  • A. Steinbüchel H. E. Valentin (1995) FEMS Microbiol. Lett. 128 219–228

    Google Scholar 

  • A. Chowdhury (1963) Arch. Mikrobiol. 47 167–200

    Google Scholar 

  • F. P. Delafield M. Doudoroff N. J. Palleroni C. J. Lusty R. Contopoulos (1965) J. Bacteriol. 90 1455–1466

    Google Scholar 

  • J. Mergaert A. Webb C. Anderson A. Wouters J. Swings (1993) Appl. Environ. Microbiol. 59 3233–3238

    Google Scholar 

  • A. Schirmer D. Jendrossek H. G. Schlegel (1993) Appl. Environ. Microbiol. 59 1220–1227

    Google Scholar 

  • H. Brandl R. Bachofen J. Mayer E. Wintermantel (1995) Can. J. Microbiol. 41(Suppl 1) 143–153

    Google Scholar 

  • D. Jendrossek A. Schirmer H. G. Schlegel (1996) Appl. Microbiol. Biotechnol. 46 451–463

    Google Scholar 

  • C. R. Hankermeyer R. S. Tjeerdema (1999) Rev Environ. Contam. Toxicol. 159 1–24

    Google Scholar 

  • A. Steinbüchel (1996) in H. J. Rehm et al. (Eds), Biotechnology, Vol 6, VCH, Weinheim, pp. 405–451.

  • D. Jendrossek I. Knoke R. B. Habibian A. Steinbüchel H. G. Schegel (1993) J. Environ. Polym. Degrad. 1 53–63

    Google Scholar 

  • B. H. Briese D. Jendrossek H. G. Schlegel (1994) FEMS Microbiol. Letter 117 107–112

    Google Scholar 

  • J. Mergaert, A. Schirmer, L. Hauben, M. Mau, B. Hoste, K. Kersters, D. Jendrossek, and J. Swings (1996) Int. J. Syst. Bacteriol. July, 769-773.

  • M. Matavulj H. P. Molitoris (1992) FEMS Microbiol. Rev. 103 323–332

    Google Scholar 

  • H. Nishida Y. Tokiwa (1993) J Environ. Polym. Degrad. 1 227–233

    Google Scholar 

  • H. Nishida S. Suzuki Y. Tokiwa (1998) J Environ. Polym. Degrad. 6 43–58

    Google Scholar 

  • D. M. Horowitz J. K. M. Sanders (1995) Can. J. Microbiol. 41 (Suppl. 1) 115–123

    Google Scholar 

  • B. A. Ramsay I. Saracovan J. A. Ramsay R. H. Marchessault (1994) J Environ. Polym. Degrad. 2 1–7

    Google Scholar 

  • R. H. Marchessault F. G. Morin S. Wong I. Saracovan (1995) Can. J. Microbiol. 41 (Suppl.1) 138–142

    Google Scholar 

  • A. Schirmer C. Matz D. Jendrossek (1995) Can. J. Microbiol. 41 (Suppl. 1) 170–179

    Google Scholar 

  • C. J. Song U. Uchida S. Ono C. Shimasaki M. Inoue (2001) Biosci. Biotechnol. Biochem. 65 1214–1217

    Google Scholar 

  • C. J. Song S. F. Wang S. Ono B. H. Zhang C. Shimasaki M. Inoue (2002) Soil Sci. Plant Nutr. 48 159–164

    Google Scholar 

  • C. J. Song S. F. Wang S. Ono B. H. Zhang C. Shimasaki M. Inoue (2003) Polym. Adv. Technol. 14 184–188

    Google Scholar 

  • W. Mizuno M. Kawaguchi N. Sarukura I. Omodaka S. Takeguchi (1996) KOBUNSHI RONBUNSHU 53 513–521

    Google Scholar 

  • W. Mizuno Y. Maeda K. Kozima T. Takamichi K. Miyabe S. Takeguchi (2001) KOBUNSHI RONBUNSHU 58 59–65

    Google Scholar 

  • The Committee of Standard Method of Soil for Analysis and Measurement (1986) in Japan Society for Soil and Fertilizer Science (Eds), The Standard Method of Soil for Analysis and Measurement, HAKUTOMOSHYA, Japan, 70-175.

  • K. P. Caballero S. F. Karel R. A. Register (1995) Int. J. Biol. Macromol. 17 86–92

    Google Scholar 

  • S. Ishikuri (1992) Japan Society for Soil Microbiology (Eds) New Compilation Soil Microbiology Experimental Method YOKENDO Tokyo 45–54

    Google Scholar 

  • T. Hattori (1985) Rep Inst. Agric. Res. Tohoku Univ. 34 1–36

    Google Scholar 

  • S. Ishikuri Y. Suwa T Hattori (1984) Soil Sci. Plant Nutr. 30 249–253

    Google Scholar 

  • W. G. Cochran (1950) Biometrics 6 105–116 Occurrence Handle1:STN:280:Cy%2BD38boslU%3D Occurrence Handle15420239

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunjiang Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Song, C., Mizuno, W. et al. Estimation on Biodegradability of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and Numbers of Aerobic PHB/V Degrading Microorganisms in Different Natural Environments. J Polym Environ 13, 39–45 (2005). https://doi.org/10.1007/s10924-004-1214-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-004-1214-7

Keywords

Navigation