Skip to main content

Advertisement

Log in

Robustness Analysis and Enhancement of MANETs Using Human Mobility Traces

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Understanding network behavior that undergoes challenges is essential to constructing a resilient and survivable network. Due to the mobility and wireless channel properties, it is more difficult to model and analyze mobile ad hoc networks under various challenges. In this paper, we provide a model to assess the vulnerability of mobile ad hoc networks in face of malicious attacks. We analyze comprehensive graph-theoretical properties and network performance of the dynamic networks under attacks against the critical nodes using real-world mobility traces. Motivated by minimum spanning tree and small-world networks, we propose a network enhancement strategy by adding long-range links. We compare the performance of different enhancement strategies by evaluating a list of robustness measures. Our study provides insights into the design and construction of resilient and survivable mobile ad hoc networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chlamtac, I., Conti, M., Liu, J.J.-N.: Mobile ad hoc networking: imperatives and challenges. Ad Hoc Netw. 1(1), 13–64 (2003)

    Article  Google Scholar 

  2. Firechat. https://opengarden.com/firechat

  3. Twimight. https://code.google.com/p/twimight

  4. Sterbenz, J.P.G., Krishnan, R., Hain, R.R., Jackson, A.W., Levin, D., Ramanathan, R., Zao, J.: Survivable mobile wireless networks: issues, challenges, and research directions. In: Proceedings of the 1st ACM Workshop on Wireless Security (WiSe), pp. 31–40, Atlanta, Sept 2002

  5. Zhang, D., Sterbenz, J.P.G.: Analysis of critical node attacks in mobile ad hoc networks. In: Proceedings of the 6th IEEE/IFIP International Workshop on Reliable Networks Design and Modeling (RNDM), pp. 171–178, Barcelona, Nov 2014

  6. Zhang, D., Gogi, S.A., Broyles, D.S., Çetinkaya, E.K., Sterbenz, J.P.G.: Modelling attacks and challenges to wireless networks. In: Proceedings of the 4th IEEE/IFIP International Workshop on Reliable Networks Design and Modeling (RNDM), pp. 806–812, St. Petersburg, Oct 2012

  7. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE ACM Trans. Netw. 19(3), 630–643 (2011)

    Article  Google Scholar 

  8. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  9. Deng, H., Li, W., Agrawal, D.P.: Routing security in wireless ad hoc networks. Commun. Mag. IEEE 40(10), 70–75 (2002)

    Article  Google Scholar 

  10. Yang, H., Luo, H., Ye, F., Lu, S., Zhang, L.: Security in mobile ad hoc networks: challenges and solutions. IEEE Wirel. Commun. 11(1), 38–47 (2004)

    Article  Google Scholar 

  11. Wu, B., Chen, J., Wu, J., Cardei, M.: A survey of attacks and countermeasures in mobile ad hoc networks. In: Xiao, Y., Shen, X.S., Du, D.-Z. (eds.) Wireless Network Security, Signals and Communication Technology, pp. 103–135. Springer, New York (2007)

    Chapter  Google Scholar 

  12. Roychoudhuri, R., Bandyopadhyay, S., Paul, K.: Topology discovery in ad hoc wireless networks using mobile agents. In: Horlait, E. (ed.) Mobile Agents for Telecommunication Applications, pp. 1–15. Springer, New York (2000)

    Chapter  Google Scholar 

  13. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Wang, H., Van Mieghem, P.: Algebraic connectivity optimization via link addition. In: Proceedings of the 3rd ICST International Conference on Bio-Inspired Models of Network, Information and Computing Sytems (BIONETICS), pp. 22:1–22:8, Hyogo, Nov 2008

  15. Liu, W., Sirisena, H., Pawlikowski, K., McInnes, A.: Utility of algebraic connectivity metric in topology design of survivable networks. In: Proceedings of the 7th IEEE International Workshop on Design of Reliable Communication Networks (DRCN), pp. 131–138, Washington, DC, Oct 2009

  16. Sydney, A., Scoglio, C., Gruenbacher, D.: Optimizing algebraic connectivity by edge rewiring. Appl. Math. Comput. 219(10), 5465–5479 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Tizghadam, A., Leon-Garcia, A.: Autonomic traffic engineering for network robustness. Sel. Areas Commun. IEEE J. 28(1), 39–50 (2010)

    Article  Google Scholar 

  18. Tizghadam, A., Leon-Garcia, A.: Betweenness centrality and resistance distance in communication networks. Netw. IEEE 24(6), 10–16 (2010)

    Article  Google Scholar 

  19. Rohrer, J.P., Jabbar, A., Sterbenz, J.P.G.: Path diversification for future internet end-to-end resilience and survivability. Springer Telecommun. Syst. 56(1), 49–67 (2014)

    Article  Google Scholar 

  20. Sanchez, M., Manzoni, P., Haas, Z.J.: Determination of critical transmission range in ad-hoc networks. In: Biglieri, E., Fratta, L., Jabbari, B. (eds.) Multiaccess, Mobility and Teletraffic in Wireless Communications, vol. 4, pp. 293–304. Springer, New York (1999)

    Chapter  Google Scholar 

  21. Dengiz, O., Konak, A., Smith, A.E.: Connectivity management in mobile ad hoc networks using particle swarm optimization. Ad Hoc Netw. 9(7), 1312–1326 (2011)

    Article  Google Scholar 

  22. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  23. Fronczak, A., Fronczak, P., Hołyst, J.A.: Average path length in random networks. Phys. Rev. E 70(5), 056110 (2004)

    Article  MATH  Google Scholar 

  24. West, D.: Introduction to Graph Theory. Prentice Hall PTR, Upper Saddle River (2008)

    Google Scholar 

  25. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000). 07

    Article  Google Scholar 

  26. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Daly, E.M., Haahr, M.: Social network analysis for information flow in disconnected delay-tolerant MANETs. IEEE Trans. Mob. Comput. 8(5), 606–621 (2009)

    Article  Google Scholar 

  28. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978–1979)

  29. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  30. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Brandes, U.: A faster algorithm for betweenness centrality*. J. Math. Soc. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  32. Ramanathan, R.: On the performance of ad hoc networks with beamforming antennas. In: Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 95–105. ACM (2001)

  33. Yi, S., Pei, Y., Kalyanaraman, S.: On the capacity improvement of ad hoc wireless networks using directional antennas. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 108–116. ACM (2003)

  34. Cartigny, J., Simplot, D., Stojmenovic, I.: Localized minimum-energy broadcasting in ad-hoc networks. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol. 3, pp. 2210–2217. IEEE (2003)

  35. Wan, P.-J., Călinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy broadcasting in static ad hoc wireless networks. Wirel. Netw. 8(6), 607–617 (2002)

    Article  MATH  Google Scholar 

  36. Marks, R.J., Das, A.K., El-Sharkawi, M., Arabshahi, P., Gray, A., et al.: Minimum power broadcast trees for wireless networks: optimizing using the viability lemma. In: Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, vol. 1, pp. I–273. IEEE (2002)

  37. Lindsey, S., Raghavendra, C.S.: Energy efficient broadcasting for situation awareness in ad hoc networks. In: Parallel Processing, 2001. International Conference on, pp. 149–155. IEEE (2001)

  38. Banerjee, S., Misra, A.: Minimum energy paths for reliable communication in multi-hop wireless networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 146–156. ACM (2002)

  39. Egecioglu, O., Gonzalez, T.: Minimum-energy broadcast in simple graphs with limited node power. In: Proceedings of IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2001), vol. 338. Anaheim (2001)

  40. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-efficient broadcast and multicast trees in wireless networks. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 2, pp. 585–594. IEEE (2000)

  41. Lloyd, E.L., Liu, R., Marathe, M.V., Ramanathan, R., Ravi, S.S.: Algorithmic aspects of topology control problems for ad hoc networks. Mob. Netw. Appl. 10(1–2), 19–34 (2005)

    Article  Google Scholar 

  42. Ingelrest, F., Simplot-Ryl, D., Stojmenović, I.: Energy-efficient broadcasting in wireless mobile ad hoc networks. In: Cardei, M., Cardei, I., Du, D.-Z. (eds.) Resource Management in Wireless Networking, pp. 543–582. Springer, New York (2005)

    Chapter  Google Scholar 

  43. Feeney, L.M.: An energy consumption model for performance analysis of routing protocols for mobile ad hoc networks. Mob. Netw. Appl. 6(3), 239–249 (2001)

    Article  MATH  Google Scholar 

  44. Kruskal, Joseph B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  45. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  46. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  47. Alenazi, M.J.F., Çetinkaya, E.K., Sterbenz, J.P.G.: Cost-Efficient network improvement to achieve maximum path diversity. In: RNDM’14 - 6th International Workshop on Reliable Networks Design and Modeling (RNDM 2014), pp. 202–208, Barcelona, Nov 2014

  48. Bettstetter, C.: On the minimum node degree and connectivity of a wireless multihop network. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 80–91, New York, 2002. ACM

  49. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., Chong, S.: CRAWDAD data set ncsu/mobilitymodels (v. 2009-07-23). Downloaded from http://crawdad.org/ncsu/mobilitymodels/, July 2009

  50. Liang, Y., Liu, R.: Routing topology inference for wireless sensor networks. SIGCOMM Comput. Commun. Rev. 43(2), 21–28 (2013)

    Article  Google Scholar 

  51. Kim, H., Tang, J., Anderson, R., Mascolo, C.: Centrality prediction in dynamic human contact networks. Comput. Netw. 56(3), 983–996 (2012)

    Article  Google Scholar 

  52. Al-hattab, M., Agbinnya, J.I.: Topology prediction and convergence for networks on mobile vehicles. In: International Conference on Computer and Communication Engineering ICCCE 2008, pp. 266–269, May 2008

  53. Liang, B., Haas, Z.J.: Predictive distance-based mobility management for PCS networks. In: The Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, pp. 1377–1384, Mar 1999

  54. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

    Article  Google Scholar 

  55. Anejos: a java based simulator for ad hoc networks. Future Generation Computer Systems. 17(5), 573–583 (2001). I: Best of Websim99. II, Traffic Simulation (2001)

  56. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: the dynamic source routing protocol for multihop wireless ad hoc networks. In: Perkins, C.E. (ed.) Ad Hoc Networking, chapter 5, pp. 139–172. Addison-Wesley, Boston (2001)

    Google Scholar 

  57. Aschenbruck, N., Munjal, A., Camp, T.: Trace-based mobility modeling for multi-hop wireless networks. Comput. Commun. 34(6), 704–714 (2011)

    Article  Google Scholar 

  58. Lee, K., Hong, S., Kim, S.J., Rhee, I., Chong, S.: Slaw: a new mobility model for human walks. In: IEEE INFOCOM, pp. 855–863. IEEE (2009)

  59. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 114–128. ACM (2004)

  60. Marina, M.K., Das, S.R., Subramanian, A.P.: A topology control approach for utilizing multiple channels in multi-radio wireless mesh networks. Comput. Netw. 54(2), 241–256 (2010)

    Article  MATH  Google Scholar 

  61. Banerjee, A., Agarwal, R., Gauthier, V., Yeo, C.K., Afifi, Hossam, Lee, Francis Bu-Sung: A self-organization framework for wireless ad hoc networks as small worlds. Vehicular Tech. IEEE Trans. 61(6), 2659–2673 (2012)

    Article  Google Scholar 

  62. Helmy, A.: Small worlds in wireless networks. Commun. Lett. IEEE 7(10), 490–492 (2003)

    Article  Google Scholar 

  63. Afifi, N., Chung, K.-S.: Small world wireless mesh networks. In: Innovations in Information Technology, 2008. IIT 2008. International Conference on, pp. 500–504. IEEE (2008)

  64. Cavalcanti, D., Agrawal, D., Kelner, J., Sadok, D.: Exploiting the small-world effect to increase connectivity in wireless ad hoc networks. In: Souza, J.N., Dini, P., Lorenz, P. (eds.) Telecommunications and Networking-ICT 2004, pp. 388–393. Springer (2004)

  65. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 31–36. (2009)

  66. The ns-3 Network Simulator. http://www.nsnam.org, July 2009

  67. Zhang, D., Sterbenz, J.P.G.: Robustness analysis of mobile ad hoc networks using human mobility traces. In: Proceedings of the 11th International Conference on Design of Reliable Communication Networks (DRCN), Kansas City, Mar 2015

  68. Zhang, D., Sterbenz, J.P.G.: Measuring the resilience of mobile ad hoc networks with human walk patterns. In: Proceedings of the 7th IEEE/IFIP International Workshop on Reliable Networks Design and Modeling (RNDM), Munich, Oct 2015

Download references

Acknowledgments

This is a significantly extended version and substantial revision of the papers that appeared in IEEE/IFIP DRCN 2015 [67] and partial work in IEEE/IFIP RNDM 2015 [68] with considerable amount of new material in Sect. 2 and 4. Simulations and analyses of different enhancement strategies including newly-proposed longest-path-based approach appear in this work for the very first time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zhang.

Additional information

This research was supported by NSF Grant CNS-1219028 (Resilient Network Design for Massive Failures and Attacks).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Sterbenz, J.P.G. Robustness Analysis and Enhancement of MANETs Using Human Mobility Traces. J Netw Syst Manage 24, 653–680 (2016). https://doi.org/10.1007/s10922-016-9381-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-016-9381-0

Keywords

Navigation